

Model Order Reduct ion
for Large Scale Engineer ing
Models Developed in ANSYS

E. B. Rudnyi, J. G. Korvink

IMTEK, Universität Freiburg, Georges-Köhler-Allee, 103
D-79110, Freiburg, Germany, {rudnyi, korvink}@imtek.de

http://www.imtek.uni-freiburg.de/simulation/

Abstract.

The software mor4ansys that allows engineers employ the modern
model reduction technique to the finite element models developed in ANSYS
is presented. We focus on how one extracts the required information from
ANSYS and makes the model reduction implementation not dependent on a
particular sparse solver in C++. We discuss the computational cost and give
examples related to structural mechanics and thermal finite element models.

1 Introduction

Model order reduction of linear large-scale dynamic systems is already quite an estab-
lished area [1]. In many papers (see references in [2]), the advantages of model reduc-
tion have been demonstrated for variety of scientific and engineering applications. In
the present work, we focus on how engineers can combine this technique with existing
commercial finite element software in order to

• Speed up a transient or harmonic analysis,

• Generate automatically compact models for system-level simulation,

• Incorporate finite element packages during the design phase.

Model reduction is conventionally applied to a large-scale dynamic system of the
first order as follows

(1)

where and are the system matrices, is the input matrix, is the output matrix.
The aim of model reduction is to generate a low-dimensional approximation in the
similar form

(2)

that describes well the dependence of the output vector on the input vector and at
the same time the dimension of the reduced state vector is much less than the dimen-
sion of the original state vector .

Eẋ Ax= Bu+

y Cx=

A E B C

Er ż Arz= Bru+

y Crz=

y u
z

x

The finite element package produces a system of ordinary differential equations
after the discretization in space the partial differential equation describing the user
model. At this stage, it is possible to apply directly the modern model reduction
methods [1]. However, the extraction of the system matrices from a commercial
package happens not to be an ordinary problem and we share our experience on how it
can be done with ANSYS [3].

The system matrices are high dimensional and sparse. As a result, the implementa-
tion of a model reduction algorithm usually depends on a particular sparse solver and a
storage scheme for sparse matrices. We present C++ interface that allows us to isolate
the model reduction and sparse solvers completely for the negligible overhead.

Finally we analyse the computation cost and give the performance results for a few
ANSYS models. The comparison of the accuracy of reduced models in respect to the
original ANSYS models is given elsewhere [4].

2 mor4ansys

The developed software comprises the two almost independent modules. The first reads
binary ANSYS files and assembles a dynamics system in the form of Eq (1) for the first
order systems or

(3)

for the second order systems, where , and are the three system matrices for the
second-order systems. The second module applies the model reduction algorithm to Eq
(1) or (3), that is, it finds a low-dimensional subspace

(4)

such that it allows us to reproduce the transient behaviour of the original state vector
with required accuracy.

After that, the original equations are projected to the subspace found, for example
for Eq (2) we have , , , .

The software can also read as well as write the matrices for the original system in
the Matrix Market format [5].

2.1 Interfacing ANSYS

The development of the first module happened to be rather difficult because the most
users of a commercial finite element package do not want to extract the dynamics
system in the form of Eq (1) or (3) and, as a result, this is not a trivial operation.

ANSYS is a huge package and its behaviour is not completely consistent. For
example, the information described below is not applicable for the fluid dynamics
module FLOTRAN.

Our software uses a binary

EMAT

 file with the element matrices in order to assemble
the global system matrices. The file format is documented and ANSYS supplies a
library of Fortran subroutines to work with it [6]. An example of how one can use them

M ẋ̇ Eẋ Kx+ + Bu=

y Cx=

M E K

V

x Vz ε+=

Er VTEV= Ar VTAV= Br VTB= Cr CV=

can be found in the Mathlink application that allows us to read binary ANSYS files into
Mathematica [7]. ANSYS has a special command, partial solve,

PSOLVE

, when one
can estimate element matrices for given a state vector without going through the real
solution stage. This allows us to generate an

EMAT

 file quite fast for a given model.
However, it was necessary to overcome the next problems:

• The

EMAT

 file does not contain the information about neither Dirichlet nor equa-
tion constraints. They should be extracted separately.

• The

EMAT

 file has a contribution to the load vector from element matrices only.
If nodal forces or acceleration is used to apply the load, this information should
be also extracted individually.

• It is necessary to assemble the global matrices from the element ones.

During the solution phase, ANSYS can write a binary

FULL

 file with the assembled
system matrices. When we have started the development with ANSYS 5.7, this file did
not contain the load vector (input matrix). Since then there have been many changes.
Since ANSYS 6.0 the

FULL

 file can keep all the original matrices, the load vector, the
Dirichlet and equation constraints. The newest version ANSYS 8.0 allows us to make
the assembly only and write the

FULL

 file without a real solution phase (equivalent to
partial solution with

EMAT

). One can also now dump the information from the

FULL

file in the Harwell-Boeing matrix format. Hence, since ANSYS 8.0 it is possible to use
the

FULL

 file efficiently. However, depending on the analysis type the

FULL

 file may
contain not the original stiffness matrix but rather the linear combination of system
matrices instead. Thus, it is still fun.

In the current version of

mor4ansys

, the

EMAT

 files is employed as the main
source to build Eq (1) or (3). An additional information is written in the form of text
files, which are generated by means of ANSYS macros developed by us: the Dirichlet
and equation constraints and nodal forces. The

FULL

 file can be used to extract the load
vector when otherwise this is difficult, for example, when the acceleration load is used.

ANSYS cannot write a few different load vectors into the

FULL

 and

EMAT

 files.
When multiple-input is to be preserved in Eq (1) or (3), a use should for each input:

• Delete previously applied load,

• Apply a new load,

• Generate matrices.

In order to ease this process, the second strategy is also allowed when a user does
not have to delete the previous load. In this case, each new load vector contains all the
previous vectors and

mor4ansys

 correct them at the end of the first phase.

2.2 Running Model Reduction Algorithm

The Krylov subspaces allow us to obtain a low-dimensional subspace in Eq (4) with
excellent approximating properties and at the same time by means of a very efficient
computational way [8][9]. The current version of

mor4ansys

 implements the block
Arnoldi algorithm [8].

Each step of an iterative Krylov subspace algorithm requires us to compute a
matrix-vector product, for example, for the first-order system

(5)

where is some vector. The system matrices are high-dimensional and sparse and one
cannot afford to compute explicitly. The only feasible solution is to solve a linear
system of equations for each step as follows

 . (6)

This constitutes the main computational cost up to the order of the reduced system 30.
Later on, the additional cost associated with the orthogonolization process can be also
observed.

There are many sparse solvers as well as many storage schemes for sparse matrices.
Our goal was to implement a model reduction algorithm in a way that does not depend
on a particular solver. In addition, we wanted to change solvers at the run-time, that is,
to allow for the run-time polymorphism. As a result, we have chosen the virtual function
mechanism, as its overhead is negligible in our case when the operations by themselves
are quite computationally intensive.

The basic operations, which in our view should enough to support the Krylov-
subspace based model reduction algorithms, are expressed as follows

class LinearSolver {
public:
virtual MatrixHandle SetMatrix(SparseMatrix &mat) = 0;
virtual MatrixHandle SumMatrices(MatrixHandle mat1,
MatrixHandle mat2, const double &alpha) = 0;
virtual void ClearMatrix(MatrixHandle mat) = 0;
virtual void MulMatrixByVec(MatrixHandle mat, double
*in, double *out) = 0;
virtual InverseHandle PrepareInverse(MatrixHandle mat,
bool ClearMatrix, const string ¶m) = 0;
virtual void ClearInverse(InverseHandle L) = 0;
virtual void MulInverseByVec(InverseHandle L, double
*in, double *out) = 0;
virtual bool IsSymmetric(MatrixHandle mat) = 0;
virtual void clear() {}
virtual ~LinearSolver() {clear();}
};

The class is written in terms of relatively low-level functions, as the goal was to
cover many different scenarios. The vectors are represented by continuous memory, as
they are dense in the case of the Krylov subspaces.

The function

SetMatrix

takes a sparse matrix from the first module and converts
it to the form required by the solver. It returns a low-weight

MatrixHandle

 object
that is currently represented as a pointer to void. It is the user responsibility to free
memory for the matrix by calling

ClearMatrix

.

The function

PrepareInverse

 computes either a factor or preconditioner. It can
delete the original matrix if necessary. The low-weight

InverseHandle

 object, a

A 1– Eh

h
A 1–

Ag Eh=

pointer to void in our implementation, is responsible to point to the data structure that
keeps all relevant information for the solution phase.

The function

clear

 and destructor is responsible to delete the internal data struc-
tures provided they were needed.

At present, the direct solvers from the TAUCS [10] and UMFPACK [11] libraries
are supported. The ATALS library [12] has been used to generate the optimized BLAS.
We have found that for many ANSYS models up to 500 000 degrees of freedom the
modern direct solvers are quite competitive as the matrix factor fits within 4 Gb of
RAM. This allows us to reuse the factor to generate and achieve good performance.

3 Computational Cost of Model Reduction

We have observed that for many ANSYS models the order of the reduced system 30 is
enough to accurately represent the original high-dimensional system [4]. Hence, for
simplicity we limit the analysis of the computational cost to this case.

The simulation time of the reduced system comprising 30 equations is very small
and we can almost neglect it. Thereafter, in the case when several simulations with
different input functions are necessary (the system-level simulation case), the advan-
tage of model reduction is out of question.

Yet, during the design phase the reduced model should be generated each time
when a user changes the geometry or material properties in the original model. In this
case, a reduced model might be used just once. Nevertheless, the model reduction time
can be smaller than the simulation time of the original system even in this case. Let us
consider this case below.

Let us assume that a direct solver is applicable and the dimension of 30 for the
reduced system is enough. Then the model reduction time is equal to the sum of
factoring of in Eq (5) and for the 30 back substitution steps in Eq (6). Table 1 presents
computational times for seven ANSYS models where the system matrices are
symmetric and positive definite. The first four rows correspond to the thermal simula-
tion [13] and the last three to the structural mechanics of a bonded wire [14].

Each case is specified by its dimension and the number of non zero elements in the
stiffness matrix. Then he time of a stationary solution in ANSYS is given as a reference
point. Note that the real simulation time in ANSYS required for the stationary solution
is bigger than in Table 1 as it includes reading/writing files as well as some other oper-
ations. After that go the time to factor a matrix by means of the multifrontal solver from
the TAUCS library [10] and the time to generate the first 30 vectors. The latter is domi-
nated by the solution of Eq (6) by means of back substitution. As the difference to
generate the first and thirtieth vectors was less than 10-20%, we can say that the
orthogonolization cost was relatively small.

Note that the TAUCS multifrontal solver is even faster than the ANSYS solver. The
total time to generate a reduced model is about two times more than that for the
stationary solution. At the same time, the reduced model can accurately reproduce any
transient and harmonic simulation [4] of the original models.

V

A

The simulation time of a harmonic analysis is a product of solution time for a
complex linear system by the number of frequencies needed. The matrix factor cannot
be re-used as the linear system to solve depends on the frequency. The solution time for
a complex linear system is about two times more expensive. Hence model reduction
allows us to save the simulation time by a factor equal to a number of frequencies at
which the harmonic response is required. For example, if it is necessary to estimate the
transfer function at ten frequencies, then the model reduction plus the simulation of the
reduced system is roughly ten times faster than the simulation of the original system.

For the transient simulation, the situation is more difficult to analyse as this depends
on the integration strategy. In principle, it is possible to say that the model reduction
time above is equivalent to 30 equally spaced timesteps as in this case the same strategy
with the re-use of the matrix factor can be applied. However, in our experience in order
to receive accurate integration results for the examples in Table 1, one either needs at
least 600 equally spaced timesteps or the use of adaptive integration schemes where the
factor re-use in not possible. In both cases, the model reduction plus the simulation of
the reduced system was more than ten times faster.

4 Conclusions

We have shown that in the case of linear dynamics system (1) and (3) modern model
reduction techniques can speed up finite element transient and harmonic simulation
significantly. For nonlinear systems, there are promising theoretical results in the case
of polynomial type nonlinearity [15]. Yet, in the nonlinear case in addition to many
theoretical problems, it happens that extracting a nonlinear system (1) or (3) from a
commercial finite element tool is a challenge by itself.

Table 1:

Computational times on Sun Ultra-80 with 4 Gb of RAM in seconds

dimension nnz

stationary
solution in

ANSYS
7.0

stationary
solution in

ANSYS
8.0

factoring
in TAUCS

generation
of the first
30 vectors

4 267 20 861 0.87 0.63 0.31 0.59

11 445 93 781 2.1 2.2 1.3 2.7

20 360 265 113 16 15 12 14

79 171 2 215 638 304 230 190 120

152 943 5 887 290 130 95 91 120

180 597 7 004 750 180 150 120 160

375 801 15 039 875 590 490 410 420

5 Acknowledgment

ANSYS models of the microthruster and the bonded wire have been made by T. Bech-
told and J. Lienemann respectively. Partial funding by the DFG project MST-Compact
(KO-1883/6), the Italian research council CNR together with the Italian province of
Trento PAT, the European Union (grant EU IST-1999-29047, Micropyros) and an oper-
ating grant of the University of Freiburg is gratefully acknowledged.

6 References

[1] A. C. Antoulas, D. C. Sorensen, Approximation of large-scale dynamical systems: An
overview, Technical Report, Rice University, Houston, 2001, http://www-ece.rice.edu/
~aca/mtns00.pdf.

[2] E. B. Rudnyi, J. G. Korvink, Automatic Model Reduction for Transient Simulation of
MEMS-based Devices, 2002, Sensors Update 11 (2000) 3–33.

[3] ANSYS, ANSYS Inc., http://www.ansys.com.

[4] J. G. Korvink, E. B. Rudnyi, Model Order Reduction of MEMS for efficient computer aid-
ed design and system simulation, Sixteenth International Symposium on Mathematical
Theory of Networks and Systems, Belgium, July 5-9, 2004.

[5] R. F. Boisvert, R. Pozo, K. A. Remington, The Matrix Market Exchange Formats: Initial
Design, NISTIR 5935, http://math.nist.gov/MatrixMarket/

[6] Guide to interfacing with Ansys, ANSYS Inc. It is not included with ANSYS, one has to
purchase it separately.

[7] E. B. Rudnyi, AnsysRecords and AnsysEmat, IMTEK Mathematica Supplement,
http://www.imtek.uni-freiburg.de/simulation/mathematica/IMSweb/. See Add-Ons | IM-
TEK | Interfaces and files to compile at AddOns/Applications/Imtek/Interfaces/Ansys/

[8] R. W. Freund, Krylov-subspace methods for reduced-order modeling in circuit simulation,
Journal of Computational and Applied Mathematics, 123 (2000) 395-421.

[9] Z. J. Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynami-
cal systems, Applied Numerical Mathematics 43 (2002) 9–44.

[10] S. Toledo, D. Chen, V. Rotkin, TAUCS – A library of sparse linear solvers, http://
www.tau.ac.il/~stoledo/taucs/

[11] T. A. Davis, UMFPACK, http://www.cise.ufl.edu/research/sparse/umfpack/

[12] Automatically Tuned Linear Algebra Software (ATLAS),
http://math-atlas.sourceforge.net/

[13] E. B. Rudnyi, Micropyros Thruster, 2004
http://www.imtek.uni-freiburg.de/simulation/benchmark/

[14] E. B. Rudnyi, J. Lienemann, A. Greiner, and J. G. Korvink, mor4ansys: Generating Com-
pact Models Directly from ANSYS Models. Technical Proceedings of the 2004 Nanotech-
nology Conference and Trade Show, Nanotech 2004, March 7-11, 2004, Bosten, Massa-
chusetts, USA.

[15] J. R. Phillips, "Projection-based approaches for model reduction of weakly nonlinear,
time-varying systems," IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 22, (2003) 171-187, 2003.

