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ABSTRACT

Model reduction of linear large-scale dynamic systems
is already quite an established area [1]–[3]. In a number of
papers (see references in [3]), the advantages of model re-
duction have been demonstrated. In the present paper, we
describe a software tool to perform moment-matching model
reduction via the Arnoldi algorithm directly to ANSYS finite
element models. We discuss the application of the tool to
a structural mechanical problem with a second order linear
differential equation (ODE). Its successful application to the
first order case of electro-thermal modeling is demonstrated
elsewhere [4], [5].

Keywords: model order reduction, damped second or-
der system, Rayleigh damping, Arnoldi process, Krylov sub-
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1 INTRODUCTION

mor4ansys is a command-line tool built on top of the
ANSYS-supplied library to read ANSYS binary files [7] and
the TAUCS library for sparse linear algebra [8]. After a
model is built and meshed in ANSYS, an ODE system is
obtained. Consider for example the PDE for an elastic body

f I + fD + fS = bu(t), (1)

with f I the force caused by inertia,fD the damping force,
fS the elastic force andbu(t) external forces depending on
user input and varying in time [6]. Thescatter matrix b dis-
tributes the inputsu to the domain. By discretization with
n spatial degrees of freedomxi, 1 ≤ i ≤ n, ANSYS trans-
forms the PDE ton ordinary differential equations,

fS = Kx, fD = Cẋ, f I = Mẍ (2)

=⇒ Mẍ(t) + Cẋ(t) + Kx(t) = Bu(t), (3)

whereM, C, andK are the system matrices,Bu(t) is the
load vector, andx is a vector with unknown degree of free-
doms, its dimension being routinely from 10 000 to 500 000.
The outputs of the system can in principle be an arbitrary
linear combination of states

y = L
T x, (4)

but usuallyL is only used to pick certain degrees of freedom.

The information from ANSYS is transferred as a file with
element matrices (EMAT file) and lists for Dirichlet bound-
ary conditions, nodal forces and output degrees of freedoms.
The developed software uses these files as input and produces
a reduced model by means of the Arnoldi algorithm. The
user may choose a maximum orderm for the reduced model.
Because of the iterative nature of the Arnoldi algorithm, one
obtains all possible reduced models with dimensions ranging
from 1 tom as specified by the user. The postprocessing, that
is, the solution of a reduced ODE system as well as comput-
ing its transfer function is currently performed in Mathemat-
ica. It is worth mentioning that it can be done in any other
environment as the reduced model is stored as an ASCII file.

A conventional approach to model reduction is to find a
low-dimensional subspaceV

x = Vz + ε (5)

that can well approximate the trajectory of the state vector
and then project (3) on that subspace:

Mrz̈ + Crż + Krz = br (6)

whereMr = V
T
MV, Cr = V

T
CV, Kr = V

T
KV,

br = V
T b. In mechanical engineering, the subspaceV is

usually chosen from the eigenstates of (3) or by the Guyan
method [9].

Moment matching via Krylov subspaces is a new tech-
nique [1], [3], [10] that allows us to find a low-dimensional
subspace with excellent approximating properites for rela-
tively low computational effort. For example, the time for
model reduction inmor4ansys is comparable with the time
required for a stationary solution or for a single timestep dur-
ing an ANSYS transient simulation process. Other advan-
tages mentioned above are as follows:

1. User intervention is minimal: one has just to spec-
ify the maximum dimension for the reduced system.
There is no selection of dominant eigenmodes, master
degree of freedoms or the like.

2. Iterative nature of the algorithm: one can change the
dimension of the reduced model without additional com-
putations.

A straightforward application of Krylov subspace meth-
ods to second order ODEs produces a reduced system in the



form of a first order system of ordinary differential equations
[1], [3], [10], and this is undesirable for structural mechan-
ics. Su and Craig have suggested a modified version of the
Arnoldi algorithm that preserves the second order in the re-
duced model [11]. In both cases, the damping matrixC takes
part in the process of generation of the matrixV.

The main difference of our approach with those in Refs
[10], [11] is that the damping matrix is not employed at all
during the generation of a low-dimensional basisV, that
is, the latter is built as the orthogonolized Krylov subspace
K

(

K
−1

M,K−1b
)

. Nevertheless, the reduced damping ma-
trix has been computed as a projection in (5). Such an ap-
proach is based on the engineering intuition that the damp-
ing matrix should not play a major role in finding a good
subspaceV as the most essential information is contained
within the mass and stiffness matrices. Unfortunately, we
cannot prove this mathematically. From a pragmatic view-
point, such an approach allows us a great deal of advantage
in the most often encountered case in structural mechanics
when a damping matrix is built up as a linear combination of
mass and stiffness matrices [6], i.e., the damping is chosen
as mode preserving Rayleigh damping

C = αM + βK. (7)

The unit ofα is 1/s, the unit ofβ is 1s.
The motivation for this choice comes from the fact that

by choosingM andK such that

C = M

∑

b

ab

(

M
−1

K
)b

, (8)

we gain the following properties [6]:

• Damping orthogonality, thus the different modes of the
system do not couple through the damping.

• The vibration mode shapes are the same for the damped
and undamped system.

• The essential dynamic response is associated with the
lowest few modal coordinates and thus suitable for re-
duction.

There are also intuitive interpretations of this form, basically
saying that the damping contributions come from internal
friction and the surrounding air, and it often happens that the
resulting behavior is sufficiently accurate for many applica-
tions.

In this case, one can show that the reduced damping ma-
trix Cr = V

T
CV can be computed directly from the re-

duced mass and stiffness matrices as

Cr = αMr + βKr, (9)

that is, the parametersα andβ remain as parameters during
the model order reduction process.

1.1 Moment matching for second order
systems

After Laplace-transformation of (3) and (4), the transfer
functionH(s) = L(y(s))/L(U (s)) can be written as

H(s) = L
T

(

s2
M + sC + K

)

−1

B. (10)

For simplicity, let us assume that we only have one output
and one input terminal, so thatH(s) becomes a scalar,LT

a vectorlT andB a vectorb. For our method, we also drop
the damping term. We expandH(s) by a Taylor series fors2

ats0 = 0

H(s) = lT
(

s2
M + K

)

−1

b (11a)

= lT
(

s2
K

−1
M + I

)

−1

K
−1b (11b)

=
∞
∑

i=0

s2ilT
(

K
−1

M
)i

K
−1b =

∞
∑

i=0

mis
2i. (11c)

Themi are called the moments of the transfer function. We
now seek a projectionV that provides a Padé approxima-
tion, i.e., that yields the same firstq moments for the transfer
function of the reduced system.

The Arnoldi algorithm reduces then × n matrixK
−1

M

to a smallq×q block upper Hessenberg matrixHq and during
this transformation creates a matrixV such that

colspan(V) = Km(K−1
M,K−1b) (12a)

V
T
K

−1
MV = Hq (12b)

V
T
V = Iq (12c)

It can be shown that by using these matrices the correspond-
ing moments in the full and reduced system match up to the
mth moment [2].

2 WIRE BOND MODEL

As a benchmark for the algorithm we use a model of a
gold wire bond needed for the packaging of micro devices
(see fig. 1). The material properties are listed in table 1.
The application area for this benchmark is the design of wire
bonds and the configuration of bonding machines.

The model was created in ANSYS and meshed with tetra-
hedral 10-node elements (SOLID187). It features 32877 de-
grees of freedom. A step load is applied to the first bend of
the wire, with direction parallel to thez-axis.

Young’s modulus E = 78 GPa
Poisson’s ratio ν = 0.44
Density % = 19300 kg/m2

Table 1: Material properties for the bond wire.
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Figure 1: Sketch of a wire bond used for micro chip connec-
tion (all dimensions inµm). Inset: Mesh and applied loads
for wire bond model.

3 RESULTS

The model was simulated in the time domain (transient
simulation) and in the frequency domain (harmonic simula-
tion). We investiged different settings forβ, α was set to zero
for all simulations.

ANSYS has a built-in model order reduction tool using
the Guyan method [12]. This tool requires choosing “master
nodes” from the complete set of degrees of freedom. These
nodes can be chosen by hand, but since our aim is to provide
a reduction method which should not need to rely on the ex-
perience of the designer, we only assigned the output nodes
as master nodes and use the automatic master node selection
from ANSYS. The model was order reduced using both the
Guyan method and the Arnoldi method and the transfer func-
tions were compared.

3.1 Transient simulation

Figure 2 shows the transient response at the output node
marked with an arrow (fig. 1) to a step load for the ANSYS
model (simulation performed in ANSYS) and two reduced
models for a damping ofα = 0 andβ = 1 µs (fig. 2a) or
β = 0.01 µs (fig. 2c). It is remarkable that even a model
with three (higher damping) or five (lower damping) degrees
of freedom is able to catch the transient behavior almost per-
fectly. The curves for higher order reduced models are indis-
tinguishable from the ANSYS curves for the chosen resolu-
tion of the graph.

Figures 2d, e show the same simulation with the Guyan
method. To achieve similar results, the order of the reduced
system needs to be considerably higher than for the Arnoldi
method.

3.2 Harmonic simulation

The difference is also clearly visible in the frequency plot
(fig. 3). The figures show the response of the output node for
harmonic excitation of the beam at the arrow location. While
the Guyan model of order 10 in fig. 3a leaves the curve of
the full model near the second peak, the Arnoldi model of
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Figure 2: Transient simulation with full and reduced models
of various order. a) Damping 1µs, Arnoldi. b) Difference
between reduced model of order 5 and full model. c) Damp-
ing 0.01µs, Arnoldi. d) Damping 1µs, Guyan. e) Damping
0.01µs, Guyan
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Figure 3: Harmonic spectrum for full and reduced models.
a) Spectrum for Damping 1µs. b) Spectrum for 0.01µs. c)
Logarithmic differencelog

10
|Hr(s)|−log

10
|H(s)| between

reduced models and full model for damping 1µs, d,e) for
damping 0.01µs.

order 3 matches the curve for a wide range of frequencies.
The same behavior can be seen for lower damping. How-
ever, for lower damping, the deviations are usually larger
than for lower damping because of the slower decay of high
frequency modes.

4 CONCLUSIONS

We have presented a novel approach to compute reduced
order models of second order damped systems. We showed
that this approach works very well for systems where the
damping matrix is a linear combination of the stiffness and
mass matrix, and that it greatly outperforms the Guyan method.
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