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Abstract
A reduced order model is developed for low frequency, fully coupled, undamped structural
acoustic analysis of interior cavities, backed by flexible structural systems. The reduced order
model is obtained by applying a projection of the coupled system matrices, from a higher
dimensional subspace to a lower dimensional subspace, whilst preserving some essential
properties of the coupled system. The basis vectors for projection are computed efficiently
using the block Arnoldi algorithm, which generates an orthogonal basis for the Krylov
subspace. Two computational test cases are analyzed, and the computational gains and the
accuracy compared with the direct method in ANSYS. It is shown that reduced order model
results in a very significant reduction in simulation time, while maintaining the desired
accuracy of the state variables under investigation. The method could prove as a valuable tool
in the analysis of complex coupled structural acoustic systems, and their subsequent
optimization or sensitivity analysis, where, in addition to fast analysis, a fine frequency
resolution is often required.

INTRODUCTION

In a modern passenger vehicle or a commercial airplane, the noise, vibration and
harshness (NVH) performance is one of the key parameters which the customer uses
to assess product quality. In order to gain competitive advantage, manufacturers are
striving to reduce NVH levels. As a result, design engineers often seek to evaluate the
low frequency NVH behaviour of automotive/aircraft interiors using coupled finite
element-finite element (FE/FE) or finite element-boundary element (FE/BE)
discretized models. Due to the coupling between the fluid and structural domains in
the coupled FE/FE formulation, the resulting mass and stiffness matrices are no
longer symmetrical. With wavelengths decreasing for increasing frequency, the
model size drastically increases with frequency. This presents as a major problem
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where optimization is required, especially when there are a large number of design
variables to be optimized. Therefore, generation of compact models, for fast coupled
structural acoustic analysis is of great interest to the NVH community.

The two most popular approaches currently used to reduce the computational time of
such coupled problems are the mode superposition and the component mode
synthesis (CMS) method. The reader is referred to [1], for a review of other
approaches to reduce computational time. More recently, however, model order
reduction (MOR) via implicit moment matching, has received considerable attention
among mathematicians and the circuit simulation community [2, 3]. It has been
shown in various engineering applications [4, 5] that the time required to solve
reduced order models via MOR is significantly small when compared to solving
original higher dimensional model, whilst maintaining the desired accuracy of the
solution. The aim of MOR is to construct a reduced order model, from the original
higher dimensional model, which is a good representation of the system input/output
behavior at certain points in the frequency domain. The reduction is achieved by
applying a projection from a higher order to a lower order space using a set of Krylov
subspaces, generated by the Arnoldi algorithm. Additionally, the reduced model
preserves certain essential properties such as maintaining the second order form and
stability.

The paper focuses on the application of such Krylov based MOR techniques to
undamped, fully coupled structural acoustic problems. An open source software
mor4ansys [10] is used to generate the reduced order model from an ANSYS higher
dimensional model. The harmonic simulation of the reduced order model is
performed in the MATLAB/Mathematica V5.0 environment. It is shown that the
reduced order model speeds up the simulation by orders of magnitude, without any
significant loss of solution accuracy.

MODEL ORDER REDUCTION FOR SECOND ORDER SYSTEMS

After discretization in space of a general mechanical system model, one obtains a
system of second order ordinary differential equations in matrix form as follows:

)()()()( tFutKxtxCtxM =++ &&&                                                                                     (1)

)()( txLty T=

Where (t) is the time variable, x(t) is the vector of state variables, u(t) is the input
force vector, and y(t) the output measurement vector. The matrices M, C and K are
mass, damping and stiffness matrices respectively. A harmonic simulation, assuming
F = Feiω t and ignoring damping in (1) yields:

}{}{]][][[ 2 FxKM =+−ω                                                                                         (2)
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Where, ω  denotes the circular frequency, and }{x , }{F denote complex vectors of
state variables and inputs to the system respectively. The idea of model reduction is to
find a lower dimensional subspace NxnV ℜ∈ , and,
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ε+=Vzx  where, nz ℜ∈ , n << N                                                                           (3)

such that the time dependent behaviour of the original higher dimensional state vector
x  can be well approximated by the projection matrix V in relation to a considerably
reduced vector z  of order n with the exception of a small error ε Nℜ∈ . Once the
projection matrix V is found, the original equation (2) is projected onto it. The
projection produces a reduced set of system equations, in second order form, as
follows:

}{}{])[][( 2
rrr FzKM =+−ω                                                                                      (4)
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 Where the subscript r denotes the reduced matrix and:
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r = , KVVK T
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r = , LVL T
r = .

It is worth noting that )()( ωω yyr ≈ . Due to its low dimensionality, the solution to

(4) is much faster than the original higher dimensional model. The input vector u(t)
and the output vector ymaintain the same size as (2).  There exist several methods to
choose V. In this work, we choose the projection matrix V to be a Krylov subspace in
order to provide the moment matching property [2, 3].

Model order reduction for coupled structural acoustic systems:

For a coupled structural acoustic case, we start off from Cragg’s pressure formulation
[8]:
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Where, Ms is the structural mass matrix, Mfs is the coupled mass matrix, Ma is the
acoustic mass matrix, Cs is the structural damping matrix, Ca is the acoustic damping
matrix, Ks is the structural stiffness matrix, Kfs is the coupled stiffness matrix, Ka is
the acoustic stiffness matrix, Fs is the structural force vector, Fa is the acoustic load
vector, y(t) the output measurement vector and u, p are the displacements and
pressures at nodal co-ordinates respectively. Ignoring damping for the structure and
fluid, the coupled equations become:
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It can be seen that (6) is similar to (2). In this case, the approximation becomes:
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Combining (5) and (7), the transfer function of the system, the transfer function of the
system H(s) = ( Y(s) / U(s) ) via the Laplace transform can be written as:

sasasasa
T FKsCMsLsH 12 )()( −++=                                                                           (8)

Ignoring damping, and expanding (8) using the Taylor series about 0=s results in:
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Where sasa
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By matching some of these moments about s=0, the reduced order model can be
constructed, as it directly relates the input to the output of the system. Theoretically,
any expansion point within the frequency range of interest can be used, and a real
choice depends on required approximation properties. However, explicitly computing
such moments tends to be numerically unstable [2, 3]. So we try to implicitly match
these moments of via the Arnoldi process. Su and Craig [6], showed that if the
projection matrix V is chosen from a Krylov subspace of dimension q,

}).(,.........)(,{),( 11111111 FKMKFKMKFKspanFKMK q
q

−−−−−−−− =Κ                    (10)

then, the reduced order model matches q+1 moments of the higher dimensional
model. Loosely speaking, if the qth vector spanning the Krylov sequence is present in
matrix V, we match the qth moment of the system. The block vectors K-1F and K-1M
can be interpreted as the static deflection due to the force distribution F, the static
deflection produced by the inertia forces associated with the deflection K-1F
respectively.

THE ARNOLDI ALGORITHM

To avoid numerical problems while building up the Krylov subspace, an orthogonal
basis is constructed for the given subspace. This is done using the block Arnoldi
algorithm. Given a Krylov subspace Kq (A1, g1), the Arnoldi algorithm finds a set of
vectors with norm one i.e. that is orthogonal to each other, given by:

VTV = I       and   VTA1
 V = Hq                                                                                  (11)

Where qxq
qH ℜ∈  is a block upper Hessenberg matrix and qxq

qI ℜ∈ is the identity

matrix. Figure: 1 describes the implemented algorithm, which is used to generate the
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Arnoldi vectors for the coupled structural acoustic system. For multiple inputs, the
block version of the algorithm can be found in [3].  In this case:

),()( 11
sasasasaq FKMKKVColspan −−=

qsasa
T HVMKV =−1  and IVV T =                                                                              (12)

The discussion of the block version of the algorithm, which is used to generate the
Arnoldi vectors for the coupled structural acoustic system  (Multiple input, Multiple
output) is quite involved, and the reader is referred to [3] for a detailed discussion. It
can be seen from the algorithm, that in each step, one vector orthogonal to all
previously generated vectors are constructed and normalized. Due to the iterative
property of the algorithm, it is possible to produce reduced order model of lower
dimension than initially specified, by just discarding the columns in matrix V and
subsequently the rows and columns of the reduced matrices.

Algorithm: 1:

Input: System Matrices Ksa,Msa, Fsa, L and n (number of vectors), expansion point 2/)( BEs ωω +=
Output: n Arnoldi vectors

0. Set gvi =

1. For :,1 doni →=

        1.1  Deflation check: ||||1, iii vt =−

        1.2  Normalization: 1,
* / −= iiii tvv

        1.3  Generation of next vector: 1
*
1 Avvi =+

        1.4  Orthogonalization with old vectors: for j=1 to i:

                   1.4.1 
*
11, += i

T
jj vvt

                   1.4.2 jijij vtvv ,
*
1

*
1 −= ++

2. Discard resulting qH , and project LFKM sasasa ,,,  onto V to obtain reduced system matrices

rRsaRsaRsa LFKM ,,,  where the subscript Rsa represents the reduced structural acoustic matrices.

Figure: 1: Arnoldi Process [2] [3].

NUMERICAL TEST CASES

Test Case - 1:

The first example we consider in this paper is an academic test case, rather than an
industrial application. The test model is a 1m x 1m clamped undamped aluminium
plate backed by a rigid walled rectangular cavity of dimension 1m x 1m x 1m. All the
other sides of the cavity are assumed to be rigid. A total of 8400 elements were used
for the model. A force excitation of 1N is applied on one of the nodes on the plate as
shown in Figure: 2(a). The coupled equations are solved using two approaches: (a)
The direct method and (b) MOR via Arnoldi.  35 vectors were generated using the
Arnoldi algorithm as described in the previous section. The reduced order model was



R Srinivasan Puri, Denise Morrey, Andrew Bell, John Durodola, Evgenii B Rudnyi and Jan G Korvink

Figure 2 – (a) Top: Structural FE model
   (b) Bottom: Noise Transfer Function

        Figure 3 – (a) Top: Receptance
(b)Bottom: Noise Transfer Function

set up and solved in Matlab/Mathematica V5.0 environment. The displacement
amplitudes of the plate and the noise transfer function (Pressure/Force) computed on
certain points inside the fluid domain are specified as outputs for the analysis. The
transfer functions are shown from Figure: 2(b), 3(a) and 3(b).

Test Case - 2:

A model structure, made of simple beams and plates was manufactured to test new
algorithms and techniques. The structure was modelled using a top-down modelling
approach. The structural model was divided into seven areas. Four of these areas: one
corresponding to the vehicle roof, firewall, floor pan and back plate, were meshed
using four noded quadrilateral shell elements with six degrees of freedom at each
node. A total of 3706 elements were adequate to capture the dynamic behaviour of
the structure. The acoustic model was modelled using eight noded acoustic brick
elements with one pressure degree of freedom at each node. Two faces of the acoustic
model were assumed to be fully reflective i.e. rigid walls. The coupled model was
excited at two locations as shown in Figure: 4(a). 170 vectors were generated using
the multiple input multiple output Arnoldi algorithm. The noise transfer functions are
shown from Figure: 4(b), 5(a) and 5(b). All computations described in this paper
were performed on a Pentium 3GHz 2GB RAM machine.

COMPUTATIONAL TIMES

To evaluate the computational gains achieved by using reduced order models via the
Arnoldi process, the computational times required to solve the higher dimensional
ANSYS model and the reduced order model are compared. Table: 1 shows the
computational time required for test cases 1 and 2.

Model Elements DOF's ANSYS Direct     MOR via Arnoldi Reduction

TC1    8400 11427        2906 s             27.8 s    99.04 %

TC2   14220 29413      16530 s           169.4 s    98.97 %

Table 1 – Computational Times; TC1: Test Case-1; TC2: Test Case-2.
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Figure 4 – (a) Top: Coupled FE model
   (b) Bottom: Noise Transfer Function

Figure 5 – (a) Top: Noise Transfer Function
(b) Bottom: Noise Transfer Function

For the reduced order model, the computational time is a combination of three steps
(a) Running a Stationary solution and generating matrices (b) Reading matrices and
generating of Arnoldi vectors (c) Projection to second order form and (d) Simulation
of the reduced order model. The spilt computational times for test case 1 and 2 are
shown in Table: 2. It can be seen that significant speed up is achieved by the use of
model order reduction. Another interesting feature of the Arnoldi process is that, the
computational times do not depend on the frequency resolution for the reduced order
model, while, an almost linear increase can be observed with increasing substeps for
the higher dimensional ANSYS model. This is particularly useful, for complex
structural acoustic systems, where a higher frequency resolution is often desired.

Model

ANSYS

Stationary

Read Matrices , Arnoldi

     Vector Generation

Projection of

   Matrices

Reduced model

    Simulation

Total: MOR via

      Arnoldi

  TC1      6 s 21.3  s           (35 Vectors)      0.4 s          0.2 s         27.8 s

  TC2      4 s 144.7 s        (170 Vectors)    14.7 s          6 s       169.4 s

Table 2 – MOR Split Computational Times; TC1: Test Case-1; TC2: Test Case-2.

SUMMARY

A new method to develop efficient reduced order model for fully coupled structural
acoustic problems has been outlined. The basis vectors for model reduction are
computed by applying the Arnoldi algorithm, which computes the projection vectors
spanning the Krylov subspace, to match the maximum number of moments of the
system. The two test cases used in this paper, show that good approximation
properties can be obtained by projecting the higher dimensional system to a lower
dimension and matching the low frequency moments of the system. In the test cases
shown, the moments are matched at approximately half of the analysis
range 2/)( BEs ωω += . The choice of s is often an open question. If a Taylor series
expansion is considered around a higher frequency, a reduced order model could be
obtained with better approximation properties around that frequency range. In
addition to this, a reduced order model could be calculated, which matches moments
around several expansion points, with each expansion point requiring a separate
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factorization. However, for the test cases analyzed in this paper, a single expansion
point yields very good approximation properties. Figure: 2(b), 3(a), 3(b), 4(b), 5(a)
and 5(b) indicates that there is almost no difference between results from ANSYS
calculated and the reduced order model. While there exist several methods to choose
basis vectors, we have chosen these vectors to span the Krylov subspace. Compared
to the computing eigen modes and eigen vectors of the system matrices, computing
vectors spanning the Krylov subspace is much faster and efficient, since a normal
modal analysis of a complex structural or an acoustic system tends to be
computationally expensive. In fact, there is no guarantee that the computed modes
included for the mode superposition via a modal analysis would be enough for the
time/harmonic analysis, and often an approximate guess of modes within the 2n range
are computed for projection, n being end frequency [7]. Figure: 2(b), 3(a) and 3(b)
show that the reduced order model accurately captures the dynamic behaviour of the
coupled higher dimensional system, indicated by peaks at ~170Hz and ~240Hz,
which correspond to the first and second acoustic mode of the cavity. Also, a
complete approximation of the output is guaranteed by the Arnoldi process. Although
this has not been verified explicitly in either of the test cases, existing literatures show
that a complete match is specific to the Arnoldi process (e.g. [9]). For both test cases,
25 outputs were chosen for the analysis, which included both normal displacements
on the structural portion of the model and pressure levels in the fluid domain. The
number of vectors needed to accurately represent the system was 35 and 170 for test
cases 1 and 2 respectively. The difference in the number of vectors needed can be
attributed to the nature of coupled models itself and its resulting transfer function. It
is also worth noting that the process of computing the minimum number of required
vectors can be completely automated. The reduced order modelling framework
outlined in this paper could serve as an excellent alternative to many other reduction
techniques, particularly for low frequency vibro-acoustic optimization, where
reduction of computational time is often sought.
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