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Abstract
Compact thermal models for semiconductor devices

are usually constructed under the assumption of constant
material properties as well as the convection coefficient.
However, in many cases this is the cause of undesired
deviations from experimental results. In this paper, we
present an extension of model order reduction to construct
a compact thermal model for the case when a convection
coefficient is nonlinear. As an example, we use transient
thermal simulation of a semiconductor device with a
temperature-dependent convection coefficient. We
demonstrate that the model order reduction technique
introduced in this paper can treat such nonlinearity very
efficiently. At the same time, the reduced model is
accurate enough to replace the original model.

1. Introduction
Engineers often employ compact thermal models to

speed up system-level simulation. However, conventional
compact models are limited to the linear case when all
material properties are assumed to be constant [1, 2]. This
may not be enough to describe accurately measured
results. There was an attempt to generalize conventional
compact thermal modeling to include nonlinear behavior
[3]. However, because the construction of compact
models is based on data fitting, the problem to choose the
right topology for a compact model becomes even more
difficult.

Formal model reduction [4, 5] takes as input high-
dimensional system matrices of ordinary differential
equations obtained after the discretization in space of the
heat transfer equation. Then, it generates automatically an
accurate compact model [6, 7] by means of a formal
procedure based on matrix linear algebra. Unfortunately,
this is also limited to the linear case.

Recently, there were successful attempts to extend the
model reduction approach to a nonlinear system: see
review [8] and case studies related to an electrical circuit
[9] and MEMS [10]. In the present paper, we use a
thermal model for a semiconductor device [6] as a case
study to apply these methods to the problem when the
film coefficient depends on temperature.

In the following text, we first give a review of
nonlinear model order reduction [3] in section 2. The
nonlinear model of a semiconductor device and the
application of model order reduction are described in
section 3. In section 4, we show the efficiency of
nonlinear model order reduction with simulation results.
Conclusions are given in section 5.

2. Overview of nonlinear model order reduction
In this section, we overview the model order reduction

method from [9]. We describe its application in the next
section.

The nonlinear system considered in [9] is of the
following form,

 

€ 

dx /dt = f (x) + bu(t)
y(t) = cT x(t)

 
 
 

                                          (1)

where the vector nRtx ∈)(  is often referred to as a ``state

variable". The dimension n of this vector is usually called
the dimension of the system. The initial condition is
assumed to be 00 =x , u(t) is the input signal, y(t) is the

output response, a linear combination of the state vector
entries. From an engineering viewpoint, the output is
useful information that can be directly obtained from the
state vector.

Let us assume that f(x) is smooth enough so that it can
be expanded into a Taylor series about the initial
condition, for example

L++= xHxxDxf f
T

f )0()0()(                               (2)

where )0(fD  is the Jacobian matrix of f(x) at 0, )0(fH  is

the so called Hessian tensor, for detailed explanations
of )0(fH see [9].

If f(x) was approximated by the first two components
of the Taylor expansion above, then the quadratic
nonlinear system below is an approximation to the
original nonlinear system (1), provided )0(fDA = ,

)0(fHW = ,

€ 

dx /dt = Ax + xTWx + bu(t)
y = cT x(t)

 
 
 

                                    (3)

The projection matrix for model reduction is computed by

},,,{}
~
{ 21 bAbAbAcolspanVcolspan q−−−= L                 (4)

This equation is inspired by linear order reduction based
on the Krylov subspace projection technique [4]. The
terms on the right hand side of (4) are the moment vectors
of the transfer function of the linear system below, which
only contains the linear part in (3)



€ 

dx /dt = Ax + bu(t)
y = cT x(t)

 
 
 

                                              (5)

The columns in V
~  are required to be orthogonal with

each other, that is IVV T =
~~ , I being the identity matrix. In

(4), on the left hand side, colspan means the subspace
spanned by V

~ , on the right hand side, colspan means the
subspace spanned by bAbAbA q−−− ,,, 21 L .

When V
~  is applied to the quadratic system (3) by

means of the approximation zVx
~

≈ , Eq (3) becomes

€ 

˜ V dz /dt = A ˜ V z + g(z) + bu(t)
y = cT ˜ V z(t)

 
 
 

                                  (6)

where zVWzVzg T ~
)

~
()( = . After the multiplication of the

first equation in (6) by TV
~ on both sides, we obtain

€ 

˜ V T ˜ V dz /dt = ˜ V T A ˜ V z + ˜ V T g(z) + ˜ V Tbu(t)
y = cT ˜ V z(t)

 
 
 

                   (7)

With a new notation VAVA T ~~ˆ = , gVg T~ˆ = , bVb T~ˆ = , (7)

can be simplified into (8) which is the final reduced
model.

€ 

dz /dt = ˆ A z + ˆ g (z) + ˆ b u(t)
y = cT ˜ V z(t)

 
 
 

  
                                      (8)

In order to obtain the original solution x(t) in (1) from
this reduced model (8), we merely solve (8) and obtain
the solution z(t), then use zVx

~~ =  as the approximate

solution for x(t). If the approximation zVx
~~ =  is accurate

enough, the original large model in (1) can be replaced by
the small model (8) during simulation, and this can save a
lot of simulation time and memory without loss of
accuracy.

A circuit example is given in [9] to show the efficiency
of this model order reduction technique. However, this
circuit example is only of moderate dimension n=100. In
the next section, we will introduce a nonlinear model with
the dimension of n=67112 and show the applicability of
the nonlinear model order reduction technique for a high
dimensional model.

3. Case study: a large-scale thermal model of a
semiconductor device

We have made the finite element model of a
semiconductor device similar to that presented in [6] (see
Fig. 1). The temperature-dependent convection coefficient

h(t) = a + bT

was applied with the convection boundary conditions at
the surface. After the discretization, we had a system of
ordinary differential equations as follows,

€ 

Edx /dt + Ax + f (x) = B
y(t) = Cx(t)

 
 
 

                                      (9)

where y(t) is the temperature at the specific location in the
device. f(x) is a nonlinear function that contains the
temperature-dependent convection coefficient. It is
already a qudratic function of x, hence, we did not need to
make its Taylor expansion.  The model in (9) is of the
same form as in (3), i.e., it only contains the linear term
and the quadratic term.

The dimension of (9) was 67112. The system matrices
in (9) were obtained from ANSYS binary EMAT files by
means of mor4ansys [11].

The projection matrix V was be constructed from (9)
directly. According to (4) and (5), we first derived the
corresponding linear system of (9),

€ 

Edx /dt + Ax = B
y(t) = Cx(t)

 
 
 

                                                (10)

The transfer function of (10) is as follows
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The moment vector of H(s) are the terms in the series
expansion above, and the projection matrix V  is thus
constructed as follows,

})(,,)(,{
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=

L
              (12)

By projecting the original system (8) onto the subspace
spanned by V  (similar to 6 and 7), we obtained the
reduced system of (8) in the next form,

€ 

ˆ E dz /dt + ˆ A z + ˆ f (Vz) = ˆ B 
ˆ y (t) = ˆ C z(t)

 
 
 

  
                                     (13)

where )()(ˆ,ˆ,ˆ VzfVzfAVVAEVVE TTT === , BVB T=ˆ ,

CVC =ˆ . The dimension of the system (13) was 300.
In the next section, we will show the efficiency of the

reduced model (13) with simulation results, when
simulation of the original large model (8) with the
dimension of 67112 is compared with simulation of (13)
with the dimension of 300.



4. Simulation results
In this section, we compare the simulation results

between the reduced model (13) and the original large
model (8) in figure 2 and figure 3 that shows the
temperatures at two locations within the device. In each
figure, the solid line is the solution y(t)=Cx(t) computed
directly from the original large model. Its simulation was
done in ANSYS. The dashed line is the approximate
solution computed from the reduced model (13) by means
of VzxCtyty ==≈ ˆˆ)(ˆ)( . Its simulation was done in

MATLAB. The agreement, and thus the accuracy of the
reduced model, is very good for different positions within
the device.

Figure 1:  Semiconductor device with temperature
distribution

Figure 2: Comparison of the temperature rise at
the location thb1.

Figure 3:  Comparison of the temperature rise at
the location tboard.

5.   Conclusions
We have introduced a nonlinear model order reduction

technique to produce fast simulation of a very large-scale
system derived from a thermal model of a semiconductor
device. The simulation results show that the reduced
small model is accurate enough to replace the original
large model so that only the small model needs to be
simulated. This saves simulation time and computer
memory. The results confirm the applicability of model
order reduction technique to a high-dimensional weakly
nonlinear system.
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