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ABSTRACT 

An application of formal model reduction to generate 

a boundary condition independent compact thermal 

model is discussed. A new method to find a low-

dimensional basis that preserves the convection 

coefficient as a parameter is presented. Numerical 

results show that the method allows the convection 

coefficient to change from 1 to 109 while keeping the 

accuracy of the reduced model to within a few 

percents. 

1. INTRODUCTION 
In the development of integrated circuits and 

microsystems [1][2], thermal management is always 

essential. There are several electro-thermal and 

thermo-electric coupling but probably the biggest 

concern is about the Joule heating effect, which 

generates heat during conduction of the electric 

current through a resistor. In an integrated circuit, one 

has to remove the generated heat to keep the board 

temperature within acceptable limits. In microsystems, 

the Joule heating is often employed to keep a 

designated part (hotplate) at a given elevated 

temperature. In any case, the right temperature regime 

is crucial for the correct system functioning and its 

reliability. 

The finite element method allows us to make accurate 

models to describe the heat transfer but their high 

dimensionality prevents engineers to employ them 

during system-level simulation. Hence, an important 

practical question is how one can make accurate but 

low-dimensional thermal models. 

The two European projects, DELHPI and PROFIT 

have addressed this need: to produce an accurate but a 

small thermal model of a chip [3][4]. The DELHPI 

project has identified number of requirements for a 

compact thermal model among which one of the most 

important is that the compact model must be boundary 

condition independent [5][6][7]. This means that a 

chip producer does not know conditions under which 

the chip will be used and hence the chip compact 

thermal model must allow an engineer to research on 

how the change in the environment influences the chip 

temperature. The chip benchmarks representing 

boundary condition independent requirements are 

described in [8]. Related discussions are also in Refs 

[9][10]. The goal of the PROFIT project was to extend 

the methodology to transient compact thermal models 

by using methods from [11][12].  

The development of a compact thermal model is still a 

hot topic [13][14] without being completely solved. 

Recently, modern methods of model order reduction 

have been successfully applied to automatically 

generate a compact thermal model [15]-[18], however 

they do not meet the criterion of boundary condition 

independence. In the present work, we make a 

mathematical statement of a problem in question 

(parametric model reduction) and we suggest the first 

formal solution that proved to be very efficient. The 

remaining of the paper is organized as follows. In 

Section 2, we introduce the parametric model order 

reduction method and then we show numerical results 

in Section 3. At the end, we give our conclusions.  

2. PARAMETRIC MODEL REDUCTION 

In this section, we first describe the mathematical 

problem that appears after the application of the finite 

element method. Then, we briefly review conventional 

model order reduction [16-18]. Finally, we propose 

the parametric model order reduction technique.  

2.1 Discretizing the heat transfer equation 

with the convection boundary conditions 
The partial differential heat transfer equation 
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∂
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together with the convection boundary conditions 

 q = h(Tg − Ts )  (2) 

can be discretized by a finite element method. It gives 
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where 
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i RDGC ×∈,,  respectively, iD  is diagonal. 

nRx∈ is the unknown vector.  
nmRE ×∈  represents  

the relationship between x and the output response y. k 

is a film coefficient describing the heat flow between 

the device and neighboring fluid phase. Its value can 

change significantly with the changing of the device 

environment. In [8], its numerical values change from 

1 to 109. Convection boundary conditions at different 

surfaces can have different ik . In the present paper 

we limit ourselves to the case, when ik is uniform, 

that is, to the following equation 
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The number of nodes during the discretization can 

routinely reach 100 000, especially in the case of 

three-dimensional models. This means that the order n 

of the system matrix C, G, D is very large which 

makes the use of the system (4) infeasible during 

system-level simulation. 

Model order reduction techniques have been proved to 

be promising for fast simulation of large-scale 

ordinary differential equations in circuit systems and 

micro-electronic-mechanical systems (MEMS) [16]-

[18]. Yet, a conventional model order reduction 

method can only deal with system (4) when k is fixed. 

In the next subsection, we will introduce the 

conventional way of model order reduction on system 

(4) and show its limitation. We propose our parameter 

independent method in section 2.3. 

2.2 Conventional model order reduction  
The basic idea of conventional model order reduction 

method [16]-[18] is to find a Padé approximation of 

the transfer function of the original system. The 

Arnoldi process allows us to achieve it by numerically 

efficient and stable means. The reduced order time 

domain system can be derived through the projection 

matrix. 

The Laplace transformation converts Eq (4) to the 

frequency domain 

 
sCX(s) + G + kD( )X(s) = BU(s)

Y(s) = EX(s)
 (5) 

From Eq (5), we can write the transfer function as 

follows  

BGkDsCEsUsYsH 1)()(/)()( −++==   

In order to apply the conventional model reduction, 

we must fix the convection coefficient so that k=k0  is 

a constant number. Now H(s) can be expanded into 

series around an expansion point s0 such that 

σ+= 0ss , as follows 
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is the so called moments of H(s). The orthogonal 

projection matrix 
qnRV ×∈~

 is constructed in the 

following way,  
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Numerically V
~

 is obtained by the Arnoldi process. 

Then the reduced system in time domain can be 

obtained by projecting the original unknown vector x 

into the subspace spanned by V
~

, i.e. with 

approximation zVx
~≈ : 
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Usually nq << , the order of the matrices in (7) is of 

much smaller size than that in the original system (4), 

which makes the simulation of (7) much faster. q is 

the number of moments included in the projection 

matrix in (6), which safeguards in theory that q 

moments can be matched by the transfer function of 

the reduced system. The more moments are matched 

the more accurate by the approximation zVx
~≈ . If 

the approximation can reach a satisfactory accuracy, 

then the reduced model will be a good substitution of 

(4) when k is a constant. Unfortunately, the reduced 

model (7) can be used for given k only. If we change it, 

the model reduction process should be repeated again. 

2.3  Derivation of parametric reduced model  
Mathematically speaking, the model reduction scheme 

should be modified to allow us to keep k as a 

parameter in the reduced model. In other words, 

boundary condition independent features require 

parametric model reduction. 

In general, parametric model reduction may not be 

possible. However, in our case, the parameter enters 

Eq (4) in such a simple form that the projection 



mechanism described in the previous subsection can 

preserve it. 

Let us show this. The reduced model can then be 

derived with the approximation xVx ˆ≈  in original 

system (4) 
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and multiply 
TV on both sides 
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where 

EVVEDVVDGVVGCVVC TTTT ==== ˆ,ˆ,ˆ,ˆ   

Note that Eq (9) can work for any k and the problem is 

how to find such a V that gives small error for any k. 

In the present work, we define the relative error 

between the original and reduced systems as follows 
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where 
T

nyyyy ),,( 21 L= is the solution of system 

(4) by direct numerical simulation. 
T

nyyyy )ˆ,ˆ,ˆ(ˆ
21 L=  is the approximate solution by 

the reduced model. If we use V
~

from conventional 

model reduction for some 0k , then this does not work 

well. In principle, one can generate several reduced 

models for different 0k but one needs too many of 

them. 

After several tries, we have discovered that the 

subspace generated by  
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produces the required basis. 

The problem is that C and D have different physical 

units and this should be corrected by the introduction 

of a factor µ to D as shown above and the choice of 

the factor is to be researched. 

We will demonstrate numerical results supporting our 

claim in the next section.  

3. NUMERICAL RESULTS 
In this section, we present numerical results to further 

confirm the proposed boundary independent reduced 

model in section 2.3 with an example of a 

microthruster unit shown in Fig. 1. More detail about 

the device is given elsewhere [17]. Actually, it is quite 

similar to a chip model: it has a heat source and the 

generated heat dissipates through the device to the 

surrounding. Its discretization has produced a system 

of ordinary differential equation (4) with the 

dimension of the state vector of 4257. 

The “error” presented in the figures is defined by Eq 

(10) as the average relative error between the original 

and reduced systems.  The order of the original system 

in (4) is n=4257, i.e. 
nRy∈ , and that of the reduced 

system in (7) or (9) is q=20, i.e. 
qq RyRz ∈∈ ˆ, .  

In Fig. 2, the temperature response at the middle of the 

heater is shown with different values of k in order to 

show that output of the system vary significantly when 

the parameter k changes. Note the logarithmic scale. 

Fig. 3 presents errors for reduced models computed by 

the conventional method. They are very small 

provided the reduced model is generated for each k 

individually (see the solid line). If we use projection 

matrix in Eq (6) for particular k0 to generate the 

reduced model in (9), the error rapidly grows when we 

change k in the reduced model. In other words, the 

basis generated for a particular k0 can be used just for 

a small range of k. 

In Fig. 4, the error for project basis computed by Eq 

(11) is plotted. The dashed line is the error as a 

function of k for a single reduced model with µ =1. 

The error reaches 5 % that actually is considered 

reasonable by the DELPHI authors[6][7]. This can be 

further reduced to 1% if the original system in (4) is 

approximated by three reduced models with 1=µ , 

1000, 1000000. 

 

4. CONCLUSION 
The discretization of partial differential equations for 

some engineering problems results in large-scale 

ordinary differential systems, which will make the 

simulation too slow for system-level simulation. 

We have found a projection subspace that allows us to 

generate a reduced model for wide range of k. 

The research was done in an empiric fashion. It is 

expected that some theoretical explanation can be 

offered in future work.  

 

 

 



SiNx 

 

 

             

 

 

 

 

 

 

 

Fig. 1. A 2D-axisymmetrical model of the 

microthruster unit (not scaled). The axis of the 

symmetry on the left side. A heater is shown by a 

red spot. 

 

 

  Fig.2.a Output at node 1 with different values of k 

 

 

Fig.2.b    Enlarged part of Fig.2.a  

 

 

Fig. 3 Error of proposed reduced model  

 

 

Fig.4 Error by conventional model 

                           reduction method 
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