
Model Order Reduction for Scanning Electrochemical
Microscope: The treatment of nonzero initial condition

Lihong Feng1   
lhfeng@fudan.edu.cn     

Darius Koziol2

koziol@im         tek       .de     

Evgenii B.
Rudnyi2

rudnyi@imtek.de     

Jan G. Korvink2

korvink@imtek.de     

Abstract
At present time, model order reduction is a well-
established technique for fast simulation of large-scale
models based on ordinary differential equations, especially
those in the field of integrated circuits and micro-electro-
mechanical systems. We describe the application of model
reduction to electrochemical simulation related to scan-
ning electrochemical microscope. Model reduction allows
us to reduce the simulation time significantly and, at the
same time, it maintains the high accuracy.
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INTRODUCTION
Numerical methods such as finite difference, control vol-
ume and finite element discretization have been widely
employed in electrochemistry to simulate the scanning elec-
trochemical microscope (SECM), electrochemical reactors,
etc. [1-7]. The system of ordinary differential equations
obtained after the discretization is of large dimension. As
result, its simulation consumes too much computer time.

In recent years, several model order reduction (MOR)
methods [8-10] have been proposed in order to get a quick
and accurate simulation of very large-scale integrated cir-
cuits and micro-electro-mechanical systems. They have
been proved to be very efficient.   However, to our knowl-
edge they have not been applied yet for electrochemistry
simulation. A model order reduction method based on pro-
jection technique is introduced in this paper in order to
show the applicability of this method and its advantage
over large-scale numerical simulation for the ordinary dif-
ferential equation derived from finite volume discretization.

We consider as an example the SECM working in the feed-
back mode with the electro-chemical reaction that takes
place on the electrode.
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In order to derive the partial differential equations for elec-
trochemistry, at least one reaction between two species
should be considered. Therefore, in most cases it is impos-
sible to set the initial state of all the species equal to zero.
Hence, the complete initial condition of the equation is
always nonzero. It happens that for such a system, the con-
ventional model order reduction methods [8-10] cannot be
applied immediately because they deal only with a system
possessing zero initial condition. In this paper, we propose
a transformation technique, which avoid the nonzero initial
condition so that the methods above can be successfully
used to obtain an accurate solution.

The paper is arranged as follows. We first review the con-
ventional model order reduction method based on projec-
tion technique and show its limitations when dealing with
system with nonzero initial conditions.  After that, we give
a transformation technique, which can easily deal with a
system with nonzero initial condition. Then we show the
efficiency of model order reduction with numerical simula-
tion results. Finally, some conclusions are given.

DESCRIPTION OF THE ELECTROCHEMICAL
PROBLEM AND GENERAL IDEA OF MODEL
ORDER REDUCTION
A feedback mode of SECM can be described by a partial
differential equation (Fick’s second law).
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The boundary conditions for the electrode boundary are
derived from the Buttler-Volmer equation
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When finite volume method is used to discretize (1) and
the boundary condition, a system of ordinary differential
equations is obtained
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with nRc ∈
r

 being a vector of high dimension. At present,
numerical integration is the most used method for simula-
tion of system (2).  When the dimension n of the system is
very large, the simulation is slow. Model order reduction
tries to substitute the original large dimensional system in
(2) with a system of smaller size, yet with little accuracy
lost. Thus, one need only simulate the reduced system of
small size without considering the original system. In this
way, simulation time and computer memory can be saved.

Model order reduction with projection technique [8-10] is
the method used most often. The basic idea is to find a



projection matrix V such that the unknown vector c
r

can be

sufficiently approximated by zVc
vv

≈ , with qnRV ×∈ ,
nq << , that is
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After the multiplying TV from the left of both sides, we
obtain the final reduced system with unknown state vector

qRz ∈
v

, which is of much smaller size q.
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CONVENTIONAL PROJECTION TECHNIQUE
In order to use the analysis from the previous section, one
should be able to compute the projection matrix V.
With the assumption that the initial condition of the sys-
tem is zero ( 00 =c

r
), conventional method of constructing

V is based on the transfer function of the original system
(2). In the case of system (2), we are not interested in the
complete state vector c

r
 but in a few outputs computed as

linear combinations of concentrations, i.e.
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 Then the Laplace transformation of (2)(5) with initial con-
dition 00 =c

r
 is as follows
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the transfer function is defined as
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By choosing a expansion point, σ+= 0ss , H(s) can be

expanded into series around s0
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If the projection matrix V is constructed as follows
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the reduced system (4) approximates the original system
quite well, the more terms are included in the right hand
side of (8), the more accurate  is the reduced system. One is
referred to [9] and it references for detailed theoretical proof.
Conventional method of computing V only treats things in
a general way, that is, it always has an assumption that the
initial condition of the system must be zero so that the
transfer function in the form of (7) can be obtained. How-
ever from the Laplace transformation of system in (2)

∫ ∫ ∫
∞ ∞ ∞ −−− =+
0 0 0

dtFedtecKdtecE ststst v&r

after integration, we actually obtain
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The expression in (9) is dependent on 0c
r

.  When 00 =c
r

,

it is just the expression of H(s) in (7) which corresponds to
the first part of H(s) in (9). But in our case, 0c

r
is nonzero.

If only the first part in (9) is considered to construct the
projection matrix V as in (8), the resulting reduced model
may probably be inaccurate, as the nonzero initial condition
cannot be maintained accurately in the reduced model.
One reason is that with the reduced model we cannot de-
scribe well all-possible initial conditions. That is, from
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v c 0 ≠ 0, a normal way to obtain the initial condition of the

reduced system is by projection 00 cVz T rr
≈ . However, if

we use such   
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r z 0 to compute the initial condition of the

original system we obtain 000 cVVzVc T rvv
=≈ . It is clear

that we can only obtain an approximate nonzero initial

condition 0cVV T r . The latter is a projection of the original
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v c 0  to the low-dimensional subspace and it will be very
inaccurate if   

€ 

r c 0 is far away from the subspace spanned by
V. This happens to be the case in our example of scanning
electrochemical microscope. In the next section we will
propose a method with which the above problem can be
easily avoided.

PROJECTION TECHNIQUE WITH
TRANSFORMATOIN
For system (2), define a new unknown variable
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The transformed system (10) possesses zero initial condi-
tions by the definition. And its input-output H(s) relation
will be independent of 0c

r
. It is not difficult to prove that
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M  is defined as above. The projection matrix V
~

can be
computed in a similar way as

}~,,~,~{(}
~
{ rMrMrspanVspancolumn jL=      (11)

Since V
~

is constructed based on H(s) of the system in (10),
model order reduction should be done on system (10) so



that reasonable accuracy can be kept, with the same way as
in (3)(4).We obtain the reduced system of small size
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The original unknown vector c

r
can be computed by
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is preserved exactly, since 0
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. The accuracy

of the reduced system in (12) will only depend on the accu-

racy of projection matrix V
~

, which is easily to be met by
adding more terms into the right hand side of (11).

NUMERICAL EXPERIMENTS
In this section, we present some simulation results to show
the efficiency of the model order reduction techniques in
the second section.

Figure 1 shows the scheme of the scanning electrochemical
microscope for which the partial differential equation in (1)
is derived.

The size of the original system in (2) is n=16915. The size
of the reduced system in (4) and (12) is q=100, that is the

unknown vector 100Rz ∈
v

.

The simulation errors between the solution of original sys-
tem and the solution derived by the reduced system are
estimated in Figure 2 to Figure 5. The error is defined as
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where T
nyyyy ),,( 21 L=  is the solution computed by

direct simulation of system (2), ŷ is the solution com-
puted by reduced system in (4) or (12). We assume the solu-
tion derived by direct integrate simulation as the exact so-
lution. In order to put the errors of the two different meth-
ods for model order reduction into one figure, we use the
logarithmic plot. The dashed line is the error by conven-
tional method where the projection matrix is computed by
(8), the solid line is the error by proposed transformation
method in (11)(12).

In Figure 2 and Figure 3, we give the plot of the solution
for current and the solution at node 7864.  In each of the
two figures, we compare the approximate solution by con-
ventional model reduction method with the exact solution.
One can see that the low-dimensional subspace of the di-
mension of 100 cannot reproduce initial conditions for the
nodes close to the electrode (see Figure 2) and as a result it
cannot reproduce the current. Figure 2 shows that for this

node 7864, 0cVV T r is almost zero even if   

€ 

r c 0 =1. The

solutions derived by the proposed method are indistin-
guishable with the exact solutions if they are plotted to-
gether.
The errors of the reduced model by conventional method
and the proposed method are plotted in Figure 4 and Figure
5. It can be seen that the errors between the exact solution
and the approximate solution computed by the proposed
transformation method are very small (below 1e-6).

Whereas the error of the conventional model reduction
method is large. Therefore, the reduced smaller size system
in (12) is a good substitution for the original system in (2),
and the model order reduction method is a promising tech-
nique to enhance the simulation process in electrochemis-
try.

Figure.1 The computational unit

Figure. 2 Solution comparisons for the current

Figure. 3 Solution comparisons at node 7864



Figure. 4 Error comparisons for current

Figure. 5 Error comparisons at node 7864

CONCLUSIONS
In this paper, we propose a model reduction technique for
fast simulation of the partial differential equation that arises
from Scanning Electrochemiscal Microscope (SECM). We
show by theoretical analysis and simulation results that
model reduction works well. In order to perform model
reduction on the system from SECM, we must first deal
with the nonzero initial condition. We propose a transfor-
mation technique combined with the conventional model
reduction method, which proves to be much more accurate
than merely the conventional model reduction method.

At present, we have considered a case when the voltage is
constant. However to simulate cyclic voltammogramm, the
voltage should change as a function of time. This can be
treated by parametric model reduction [11]. Its application

to scanning electrochemical microscope will be described in
a separate paper.
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