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Abstract

An overview of electro-thermal modeling of microsystems is presented. We consider the most

important coupling between thermal and electrical phenomena, and then focus on the indus-

try’s central concern, that of Joule heating. A description of different solution approaches for

the heat transfer partial differential equation, which constitutes the central part of electro-ther-

mal simulation, is given. We briefly review the analytical solutions and consider further the

numerical approaches, which are based on spatial discretization of the thermal domain. Lastly,

we describe the final level of approximation, the dynamic compact thermal modeling. We

emphasize the formal model order reduction methods, because they directly follow the spatial

discretization, and thus preserve the investment into the finite element modeling.

1. Introduction

Thermal management has become a crucial part of designing modern microelectronic and

micro-electro-mechanical components and systems (MEMS). Only after a careful study of

thermal effects in microsystems we can predict their performance, reliability and yield.

In integrated circuits, thermal management is important on all levels, starting from the transis-

tor level [1], [2], over the chip level [3] - [5], the package level [6] - [8] and the printed circuit

board (PCB) level [9], to the system level [10]. Self-heating of transistors changes their electric

properties and this can affect the circuitry. High current during electrostatic discharge may

increase the local temperature too much and destroy the transistor. Self-heating of interconnect
2



may reduce its average time to failure. It is important to position elements on a chip in such a

way that the effect of heating is minimal in respect to the chip functioning. A package should

be designed in such a way as to allow effective heat removal. Finally, the placement of semi-

conductor devices on PCB should also be optimal from the thermal management viewpoint. It

is worthy of note that the reliability of the whole board is tied to its temperature regime

because there are many mechanisms that lead to enhanced board degradation at elevated tem-

peratures.

Numerous MEMS devices, such as thermal actuators [11], thermal flow sensors [12], micro-

hotplate gas sensors [13], [14], tunable optical filters [15], [16] and many others are based on

thermal effects. The heating changes optical properties in optical filters, reduces activation

energies to allow metal oxides to detect gases and causes mechanical stress and thus movement

in actuators. The heat transfer through the moving fluid allows us to measure the flow rate in

heat-flow sensors.

All diverse engineering problems mentioned above have in common that an engineer should be

able to predict the temperature distribution for the given electrical input and to estimate how

the temperature in turn affects the electric part. In other words, he must run a joint electro-ther-

mal simulation. As for the simulation of the electrical domain, there are usually already avail-

able tools, so the real task becomes to enhance them in order to take into account a variety of

electro-thermal and thermo-electric effects. Hence, the solution of the heat transfer equation

constitutes the central part of electro-thermal simulation.

Of course, in many cases the coupling of the heat transfer equation to other physical domains

must be taken into account as well. Throughout this work, we will briefly review different cou-
3



plings and discuss what is necessary to decouple the heat transfer equation in order to be able

to solve it separately.

Our main goal, however, is to make a unified description of different levels of solution

approaches for the heat transfer partial differential equation.

Section 2 gives a short overview of different electro-thermal and thermo-electric effects in

microsystems. The importance of the Joule heating effect for MEMS and microelectronic sys-

tems will be highlighted through examples in section 3. Sections 4 and 5 describe physical

modeling with heat transfer equation and its possible couplings to other physical domains.

Throughout section 6 we discuss how to solve the parabolic heat transfer equation on its own.

The first topic is the linearization of the heat transfer equation, because the solution of the lin-

ear equation is much faster than that of the nonlinear one. The analytical solutions are briefly

reviewed. We consider further the most frequent approach, which is based on spatial discretiza-

tion of the thermal domain (often called the brute force method). The final level of approxima-

tion, dynamic compact thermal modeling (DCTM) is described in section 7. It allows us to

effectively perform transient electro-thermal simulations on a system level. We include here

the conventional, non automatic approaches such as RC-ladder network, semi automatic

approaches such as modal approximation, as well as the increasingly popular model order

reduction (MOR) approach, which can be made fully automatic. Lastly, section 8 concludes

the review by displaying a schematics of discussed modeling approaches (see Fig. 12).
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2. Overview of Coupled Electro-Thermal and Thermo-Electric Effects
in Microsystems

A classification of the most important electro-thermal effects in semiconductor and IC-related

materials utilized in microsystems is given in Table 1.1. A brief explanation of each effect is

presented below (SI units are used).

Heat conduction at the macroscopic level means that when a temperature gradient exists

within a solid body, heat energy will flow from the region of high temperature to the region of

low temperature. This phenomenon is described by Fourier's law:

(1)

This equation determines the heat flux vector (the amount of heat penetrating a unit of area

per unit of time) in W/m2 for a given temperature profile and thermal conductivity of the

body (a material property that describes the rate at which heat flows within a body for a given

temperature difference) in W/(mK). All quantities relate to a specific point. The minus sign

ensures that heat flows down the temperature gradient.

Electrical conduction describes the electrical current flow in the presence of the electrical

potential gradient. If, in (1), the temperature is replaced by the electric potential and the heat

flux vector by the electric current density vector , the solution of a corresponding problem of

Thermal Electrical

Thermal heat conduction
thermoresistance
Seebeck effect
pyroelectricity

Electrical
Joule heating
Peltier effect

Thomson effect
electrical conduction

Table 1.1Electro-thermal signal conversion effects in microsystems (see also [17]).
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electric conduction is given by:

(2)

where  is the specific electric conductivity in S/m.

Joule heating is the dominant mechanism for heat generation due to the flow of the electrical

current through the material. It is defined by Joule’s law, which in an ohmic conductor has the

form:

(3)

where j is the current density vector in , is the specific electric resistivity in and

Q is the generated heat per unit volume in . This is usually the main effect responsible

for heat generation in resistively heated microsystems. A number of applications will be pre-

sented in section 3.

The thermoresistance effect states that the specific electric resistivity of the material can be

expressed as a function of temperature :

(4)

where and are the temperature coefficients of the material in and respectively,

and is the specific electric resistivity at the zero temperature. Positive temperature coeffi-

cients are peculiar to pure metals and some alloys. In a number of microsystem applications,

metal resistors out of platinum, nickel, copper etc., are used as heating and sensing elements

[13], [15]. In such cases (4) is on the one hand of paramount importance for temperature con-

trol, and on the other hand it contributes to the nonlinearity of the governing heat transfer equa-

tion via (3).
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The Seebeck and Peltier effects are associated with a junction of two different conductors or

semiconductors, a so-called thermocouple. If there is a maintained temperature difference

between the junction and the free ends, an open-circuit Seebeck voltage is obtained at the non-

connected end. The Seebeck effect is investigated for use in miniaturized voltage sources [18].

Those devices utilize heat generated by the human body and supply electronic devices (e.g.

watches) with a minimum amount of electrical power. It is further used in thermoelectric infra-

red gas sensors [19]. The Peltier effect describes the generation or absorption (depending on

the direction of the current) of heat in a thermocouple when the current flows through the junc-

tion in the absence of any temperature gradient. Contrary to Joule heating, the Peltier effect is

reversible. It can be effectively used for heat transport opposite the temperature gradient and

hence for cooling down the environment. It is mainly used for controlling the temperature of

chips while measurements are being made. On-chip integrated Peltier elements are ideally

suited for highly localized on-chip thermal stabilization [20].

The Thomson effect is complementary to the Peltier effect. In the Thomson effect two dissim-

ilar materials are not needed but a current passed along a conductor, when a temperature gradi-

ent is maintained, results in either absorbance or generation of additional heat (in addition to

Joule heat).

The pyroelectric effect describes the change of the electric polarization induced by a change

of temperature in some nonlinear dielectric materials, such as PZT-ceramics, PbTiO3, PVC etc.

Pyroelectric materials are used within the thermal sensors and infrared detectors. Pyroelectric

motion (infrared) sensors are used in a wide variety of applications. They are commonly found

in security products, such as burglar alarms, motion detectors and intrusion detection systems
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[21]. These sensors are also useful in environmental systems, lighting controls, visitor

announcers, robotics, and artificial intelligence. They work by detecting the infrared heat emit-

ted by the human body.

3. Joule Heating in Microsystems

Joule heating happens to be the dominant mechanism for heat generation in microsystems.

Some devices like microsensors and microactuators are designed to optimize the Joule heating

effect in a controlled manner in order to improve transduction efficiency. For the others, like

integrated circuits (ICs), this effect is “parasitic“, and hence their design aims at the suppres-

sion of Joule heating. Below we review several MEMS devices whose working principle is

directly or indirectly based on Joule heating and mention the most common “parasitic” effects

based on Joule heating in microelectronic devices and their packaging.

Micro-hotplate-based devices, such as gas sensors [23] - [28], optical filters [15], thermal

flow sensors [12], solid fuel microthrusters [29], thermal infra-red emitters [30] etc. use Joule

heating to realize a desired functionality. Maximum temperatures for the operation of these

devices obtain several hundred . In order to significantly reduce the required electrical

heating power, the resistive heater structures are placed on a thermally isolated micromachined

platform called a membrane (see Fig. 1). Elevated temperatures may be essential for the onset

of operation of the device (e.g. by gas sensors, microthrusters or infra-red emitters) or con-

trolled temperate changes are used for tuning the structure‘s characteristics (e. g. for optical fil-

ters).

Micromechanical devices with electro-thermal actuation are used to perform direct

mechanical actuation through thermal expansion resulting from Joule heating of selected

°C
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microstructures. Both in-plane actuators, based on thermally induced extension [33], and out-

of-plane actuators [34], based on different thermal expansion coefficients that rely on the ther-

mal expansion of silicon, polysilicon, nickel, or related materials have been extensively studied

and used in MEMS structures. Thermal microactuators based on polymers such as polyimide,

thermal bimorphs, pseudo-bimorphs, buckling beams, compliant structures and high-aspect-

ratio structures have also been investigated (see [31] and the references there). The working

principle of embedded electro-thermal-compliant actuator is shown in Fig. 2. The wide arms,

which have lower electrical resistance than the narrow arms, draw more current and get hotter.

As a result, the structure bends.

Microfluidic devices employ Joule heating to expel micro droplets out of micro fabricated res-

ervoirs. In the reservoirs air-bubbles are generated within the liquid phase at the bottom of the

reservoir that is above the heater, as schematically shown in Fig. 3. As the properties of micro-

scale bubbles are dominated by surface tension effects, they tend to be very stable and hence

useful for generating mechanical work. The dramatic increase in volume, which is due to bub-

ble generation, forces small amounts of liquid to leave the chamber through a micro-nozzle.

This technology is used in a broad spectrum of MEMS devices starting from ink jet print heads

[35]. The thermopneumatic effect is further used to vaporize a working fluid through Joule

heating. The increased gas pressure actuates a diaphragm. This deflection can be used in

micropumps and microvalves [36] - [41] as components of micro-fluidic systems.

Microelectronic devices and their packaging are significantly influenced by temperature. In

contrast to the previously described devices, Joule heating is not a desirable effect in micro-

electronic systems, but rather a “parasitic” one. Joule heating activates damaging mechanisms
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such as corrosion of metallization and bond-pads, fatigue of wires or bonds, contact spiking,

electrostatic discharge, electrical overstress (causing alone over 40% of all failure), electro-

migration, thermal breakdown, wire bonded interconnections, flip-chip joints, cracking in plas-

tic packaging etc. In addition to all of this there is almost no room for heat dissipation due to

the huge number of transistors per unit area (modern VLSI contain 104 to 107 transistors per

chip) and also no longer enough time due to higher frequency. Today‘s heat flux densities on

the chip easily exceed 100W/cm2 [43]. Not only the operating temperature itself, but also fluc-

tuations are dangerous for the device’s reliability. It was already known in 1989 that a temper-

ature oscillation of only 15 K increases the failure rate by eight times [43]. Due to the fact that

temperature gradients are steeper in transient than in steady-state phase [45], transient

(dynamic) thermal stresses are more dangerous. Violent operating conditions include the fol-

lowing dynamic effects: avalanche and electro-static discharge. Further effects such as temper-

ature oscillations, current and voltage thermal drift or temperature gradient over the device

[43], may degrade the device’s performance.

It should be noted that heat transfer modeling on its own varies in its importance for the above

applications. In microhotplate-based devices it plays a major role and can be easily decoupled

from other physical domains. In microfluidic devices, on the other hand, it plays a relatively

small role, because it is strongly coupled to Navier-Stockes equations. In Fig. 4 the qualitative

importance of heat transfer modeling for the different types of MEMS devices is schematically

presented. However, it is difficult to set clear borders, because each engineering problem has to

be considered on its own.
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4. Physical Model - Heat Transfer Equation

The most general way to model heat transfer on the device level in crystalline semiconductors

is the phonon Boltzmann transport equation. It describes the heat exchange between heat carri-

ers (phonons), which are energy quanta of lattice vibrations [44] and the lattice. It should be

used when the heat carrier’s mean free path is comparable with the characteristic dimensions at

microscale. To give an example, the phonon mean free path in Silicon at 300K is about 300nm.

However, if one can assume that the Boltzmann-Maxwell distribution is valid for any small

volume, or in other words that the temperature is defined at any point within the domain, a

hyperbolic heat equation is used. It predicts a finite wave speed of heat propagation and is val-

ued at very small time scale of femtosecond, for example during laser heating of thin metal

films. If we further, assume that the speed of the thermal waves is infinite, the parabolic heat

transfer equation can be used instead. Its solution is our main topic, since the assumptions

mentioned above are valid for the devices in question, i. e. MEMS are approaching the limits,

but don’t reach them.

The parabolic heat transfer equation specifies the complete spatial and time profile of a temper-

ature distribution within a computational domain , limited by the boundary . In solid it

has a form:

(5)

where is the thermal conductivity in W/mK at the position r, is the specific heat

capacity (a material property that indicates the amount of energy a body stores for each degree

increase in temperature, on a per unit mass basis) in J/kgK, is the mass density in kg/m3,

is the temperature distribution and is the heat generation rate per unit vol-

Ω ∂Ω

κ T∇( ) Q ρC p t∂
∂T

–+∇• 0=

κ r( ) C p r( )

ρ r( )

T r t,( ) Q r t,( )
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ume in W/m3. (5) states that the temperature profile within a body depends upon the rate of its

internally-generated heat, its capacity to store some of this heat by raising its temperature and

its rate of thermal conduction to its boundaries (where the heat is transferred to the surrounding

environment). The solution of (5) requires the determination of initial and boundary conditions

(BC) for the simulation domain . The temperature distribution at serves as an

initial condition:

, , (6)

Prescribed temperature distribution on the boundary in time can be modeled by Dirichlet

boundary condition as follows:

, (7)

Quite often, the boundary temperature is assumed to be constant and equal to the temperature

of the surroundings and can be set to zero without the loss of generality.

Prescribed normal heat flux through the body boundaries in time can be modeled by Neu-

mann boundary condition as follows:

, (8)

Convective heat transfer takes place when the whole subvolumes move from one place at a cer-

tain temperature to another at a different temperature. Hence, the convection is created by fluid

flow. In many cases however, it is possible to eliminate the fluid flow from the computational

domain by replacing it with a so-called convection boundary condition. It assumes that the

normal heat flux through the boundary is proportional to the temperature difference between

the boundary and the ambient temperature of the adjacent fluid:

Ω T
0

t 0=

r Ω∈∀ t 0= T r t,( ) T
0

r( )=

r ∂Ω∈∀ T r( ) T prescribed t( )=

q⊥

r ∂Ω∈∀ q⊥ r( ) q prescribed t( )=
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, (9)

where is the heat transfer coefficient, which characterizes the thermal flow as well as the

thermal contact between the conducting solid and adjacent fluid with temperature .

Again, quite often . It should be noted that the convection boundary condition

turns into Neumann for , or into Dirichlet for .

Heat radiation mechanism can be modeled by so called radiation boundary condition as fol-

lows:

, (10)

where is the emitted heat transfer rate (power), is the surface incivility, is the

Stefan-Boltzmann constant ( W/m2K4) and  is the radiation surface.

It is worthy of note that in practice it is important to be able to solve (5) with different bound-

ary conditions, that is, to create a boundary conditions independent (BCI) model [62]. This is

possible at the level of detailed solution of (5) (see section 6.3) but is difficult at the level of

compact models (see section 7.1).

5. Coupling of Heat Transfer Equation to Other Physical Domains

In the general case, the heat transfer equation (5) is coupled with other partial differential equa-

tions already at the device level. Let us consider the most important coupling and discuss what

approximations are necessary to decouple the equations in order to be able to efficiently solve

(5) on its own.

The first coupling comes through the environment, since the device is usually surrounded by

moving fluid (either gas or liquid), which serves to remove heat by natural or forced convec-

r ∂Ω∈∀ q⊥ r( ) h T T ambient–( )=

h

T ambient

T ambient 0=

h 0= h ∞→

r ∂Ω∈∀ qemitted r( ) ε σ A T
4

surface T
4

ambient–( )⋅ ⋅=

qemitted ε σ

5.669 10
8–⋅ A
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tion. The heat transfer in the moving fluid is generally a part of the solution of Navier-Stokes

equations. They can be coupled with (5) in order to describe the overall heat transfer, which

makes the resulting set of equations quite complicated. In some cases it is possible to decouple

them by applying the convection boundary condition (9).

If there is a convective flow with specified flow velocity within a computational domain, the

heat transfer equation (5) gains additional, so-called “thermal flow term” . This term

complicates the analytical solutions. However, numerical methods for solving (5) can treat the

thermal flow term with small additional effort and moreover MOR-based solutions can be used

as well [46].

If the flow velocity within a computational domain cannot be specified, as in the extreme case

of bubbles formation by microfluidic devices for example, there is no way of decoupling the

(5) from Navier-Stokes equations. Hence, the solution of spatially discretized coupled system

becomes costly.

In the case of thermo-mechanical coupling, a good approximation is the solution of the thermal

problem on the Lagrangian grid [47]. Then, it is possible to solve the thermal problem on its

own and to use the temperature distribution to estimate additional stress, which is due to ther-

mal expansion.

The electro-thermal coupling is present through the heat generation rate Q, emerging mostly

from the Joule effect (3). In general, in order to solve for the current in (3), it is necessary to

solve the Poisson equation, which (in the case of an isotropic resistive heater which is free

from electrical charges) has a form:

(11)

v

ρC pv T∇

j σ ϕ∇( )∇• 0==∇•
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It is possible to solve the Poisson equation for the unknown electric potential field, provided

that the geometry of the heater, its specific conductivity and the boundary conditions are speci-

fied [22]. Note that (11) depends only implicitly on time, due to possible changes in boundary

values or changes in conductivity. This is because the speed of the electron propagation is very

high. We assume that (11) holds instantly at any given time. It should be noted that if the elec-

trical current frequency reaches the kHz range, i.e. when capacitance and inductive effects

have to be accounted for, a higher level model based on the solution of the electromagnetic

Maxwell equations is required.

By inserting (11) into (3) the heat generation rate within an ohmic conductor changes into:

(12)

By assuming homogeneous heat generation over a lumped resistor (12) simplifies to the well

known:

(13)

where I is the current passing the lumped resistor, due to potential difference U over it, R is its

resistivity and Q is the total heat generated within the resistor’s volume. By replacing Q in (5)

with (13) the coupling to the Poisson equation is avoided. However, (13) may not offer a good

approximation in all cases. For example if resistors with complex geometries are present,

homogeneous heat generation can be hardly assumed and in this case the consistent electro-

thermal simulation is needed (that is a simultaneous solution of (12) and (5)), as shown in Fig.

5.

Q j
2

σ
----- σ ϕ∇( )2⋅= =

Q I
2
R U

2

R
-------= =
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The electro-thermal coupling at the system level (with assuming a homogeneous heat genera-

tion within a lumped heater) for the special case of resistively heated microdevices, is schemat-

ically presented in Fig. 6. Note that coupling becomes more complicated in case of ICs, i. e.

when the temperature impact on semiconductor devices is taken into account [50].

A spatial discretisation of (5) over the complete simulation domain (e.g., the whole chip) is

necessary in order to obtain a thermal system shown in Fig. 6:

(14)

where C and K are the global heat capacity and heat conductivity matrices, T(t) is the tempera-

ture vector, F is the load vector (matrix) and Q(t) is the heat source vector. Obviously, in order

to effectively perform a system level simulation, it is necessary to keep the dimension of (14)

as moderate as possible. This is exactly the goal of compact modeling described in chapter 7.

6. Solving the Heat Transfer Partial Differential Equation

In the following as a border between analytical and numerical solutions of (5) we will use the

discretization of the computational domain in space, which necessarily leads to an ordinary

differential equation system. One can start with a set of functions in the computational domain

for the infinite series expansion and then proceed systematically to determine the

unknown coefficients within the series in order to solve the heat transfer equation. The

separation of variables method gives:

CṪ KT+ F Q⋅=

f i x y z, ,( )

ai t( )
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(15)

In general if the expansion functions and exactly satisfy the BCs for the problem, we

refer to a solution as analytical. An alternative is to split the domain into many small pieces,

that is to discretize it in the space. Then one can approximate the temperature field within an

element by using local shape functions and express the whole temperature field in a piece-wise

fashion. In this case, we refer to a solution as numerical.

6.1 Linearization

When material properties in the heat transfer equation are constant, it is called linear. In this

case, there are many mathematical benefits, for example one can use the superposition princi-

ple. Computationally it is definitely much easier to solve a linear partial differential equation.

Almost all analytical solutions require the heat transfer equation to be linear. For numerical

methods this is not required but it is no doubt advantageous to do so if possible. In general,

however, the material properties are temperature dependent and (5) has a form:

(16)

It is always possible to perform linearization around the operation point (temperature) in order

to convert a non-linear heat transfer equation to a linear one. After obtaining a set of linear

models around a chosen set of temperatures in this way, one can use a sort of weighting func-

tion, as done in [48] to e. g. extract a non-linear compact thermal model.

In some special cases it is further possible to use certain transformations that linearize (5).

Under the assumptions that only the thermal conductivity is temperature dependent and that

T x y z t, , ,( ) ai t( ) f i x y z, ,( )
i 0=

∞

∑=

ai f i

κ T( ) T∇( ) Q ρC p T( )
t∂

∂
T( )–+∇• 0=

κ
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is not a function of space, the authors in [49] suggest using the Kirchoff transformation of

the form:

(17)

where and is the heat sink temperature, which fully linearizes a static part

of (16). By additionally defining a new time variable, :

(18)

where diffusitivity , the time-dependent non-linear heat transfer equation

(16) becomes fully linearized:

(19)

6.2 Analytical Solutions

Most published analytical solutions assume a simple geometry of the computational domain.

Examples are the thin rectangular heat source or a volume heat source on the top of an infinite

medium. The latter is often used for modeling a bipolar transistor (see [50] and the references

there). Another example is a stacked layer structure that can be infinitely extended in length

and with directions, used for modeling a power FET transistor [51]. The most general analyti-

cal solution so far is based on [49], in which a linearized heat conduction equation (2.22) is

analytically solved in the rectangular (multilayer) thermal domain with arbitrarily distributed

volume heat sources. It is in principle possible to divide a region with arbitrary geometry into

κ

θ T s
1

κ s
----- κ T( ) Td

T s

T

∫+=

κ s κ T s( )= T s

τ

ksτ k θ( ) td

0

t

∫=

ks κ s ρC p⁄=

θ Q
κ s
-----

1

ks
-----

τ∂
∂θ

–+∇ 2 0=
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rectangular thermal subvolumes and to apply the solution from [49]. However, in this case the

problem of coupling these subvolumes must be solved as well (this is still not possible).

Different analytical approaches use Green functions [52], [50], Fourier series [49], [53] or Fou-

rier transform [51].

As a conclusion to this subsection we want to state that although the analytical solutions

require lower computational effort and are preferred by microsystem designers in the above-

mentioned special cases, it is difficult to use them in general.

6.3 Numerical Methods

There are several methods associated with a mesh, which partitions the arbitrary computational

domain into smaller units. These are the finite difference method (FDM), the finite volume

method (FVM), the finite element method (FEM) and the boundary element method (BEM).

They semi-discretize the heat transfer partial differential equation (5) and transform it into a

system of ordinary differential equations (14). An overview of these methods and a discussion

of similarities and differences between them can be found in [54]. For the heat transfer equa-

tion (5), a transmission line matrix (TLM) approach can be used as well [55], [56]. This

approach represents a physical model of heat flow as a sequence of voltage (temperature)

pulses traveling through a matrix network of transmission lines. This method requires a rectan-

gular mesh and a creation of an RC network.

Lastly, each spatial discretization can be transformed into an equivalent thermal RC network.

In this subsection we will briefly discuss the resemblance of thermal and electrical circuits.

We have mentioned the importance of creating a boundary conditions independent model. Let
19



us briefly explain, how a typical commercial solver generates such a model. The first step is the

“pure” discretization of the computational domain without having specified the heat generation

rate or boundary conditions. It results in two system matrices, CBCI and KBCI, which are stored

in the software database. In the general case, these matrices depend on temperature and are not

formed explicitly but rather are stored as a list of element matrices. Both are sparse and CBCI is

quite often lumped, which means that it is converted into a diagonal matrix. The dimension of

CBCI and KBCI equals the number of the introduced finite element nodes. We refer to this matri-

ces as BCI, because it is possible to apply boundary conditions to a model described with CBCI

and KBCI without repeated discretization.

After the Neumann and convection boundary conditions have been introduced, a system of

ordinary differential equations is written as:

(20)

where the sum contains all the heat sources and boundary conditions. The volume heat sources

and the Neumann boundary conditions contribute only to the load vector, while the convection

boundary conditions contribute to both the load vector and the heat conductivity matrix. It is

possible to add the scaling factors to each heat source and boundary condition. Hence, the

equation (20) can describe various external conditions without further need for any changes.

The use of Dirichlet boundary conditions, however, changes (20) as follows:

(21)

where the dimension of all vectors and matrices is reduced by the number of nodes to which

the constant temperature is applied (Dirichlet nodes). C and K are obtained from CBCI and

KBCI by crossing out those columns and rows which belong to the Dirichlet nodes. However,

CBCI Ṫ K BCI T KconT∑+ + f source f Neumann f con∑+∑+∑=

CṪ KT+ f source f Neumann f con f Dirichlet∑+∑+∑+∑=
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the use of Dirichlet boundary conditions makes (21) less flexible, as it is impossible to replace

them with different boundary conditions when once applied. In (20), one can change BCs by

simply using zero scaling factors. Luckily, one can always replace the Dirichlet boundary con-

ditions with the convection BCs if a very high value for the film coefficient is used.

Equations (20) and (21) are equivalent to (14) and can be directly plugged into the electric sim-

ulator as an equivalent RC-network. In order to highlight a resemblance of thermal and electri-

cal circuits, let us observe a parallel RC circuit in Fig. 7.

It is described by:

(22)

When comparing (22) with (14) it is easy to see that the heat capacity matrix can be released

by capacitor elements, the heat conductivity matrix by resistor elements and the heat source

vector (matrix) by current sources. The equivalent thermal networks were derived for different

types of finite elements [60]. Fig. 8 shows a conductive thermal network for a tetrahedral ele-

ment with a convective boundary.

It should be noted that the transformation of (14) into an equivalent thermal RC network is

exact, i. e. no approximation (in the sense of compacting the circuit) is made so far.

Additional to transforming (14) into an equivalent thermal RC network, it can also be imple-

mented in equation form in hardware description language (HDL) directly. Some examples of

implementations for electro-thermal modeling of power electronic circuits and multiple

domain devices in VHDL can be found in [57]-[59]. The major problem, however, is the com-
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putational efficiency, that is, the size of a thermal problem (see next section).

7. Dynamic Compact Thermal Modeling

As already mentioned, it is the dimension of (14) which makes the simulation time-consuming.

For a variety of MEMS devices the order of the resulting thermal ordinary differential equation

system exceeds 100,000. Hence, it is prohibitive to use these models during system-level simu-

lation. Instead, accurate dynamic compact thermal models (DCTM) are required. The methods

for constructing DCTM can be divided into three general groups: non-automatic methods such

as different RC ladder network approaches, semi-automatic methods such as modal approaches

and model order reduction methods which can be made fully automatic.

7.1 RC Ladder Approach

A large number of DCTM approaches are based on fitting an RC ladder network on the

observed (measured or numerically computed) system response, using a suitable optimization

technique. In this case, however, the RC ladder network is based on an attempt to lump a dis-

tributed thermal domain. For 1D heat conduction, if we subdivide the domain into a large num-

ber of small slabs whose thicknesses L go to zero, we get a so-called Cauer ladder network (see

Fig. 9 left) with grounded capacitors and floating resistors. This can be transformed into a Fos-

ter network (Fig. 9 right) via standard circuit transformation algorithms. While the Cauer net-

work appears to be a small version of the large equivalent circuit described in the previous

section (that is a fine mesh was replaced by a coarse one), the Foster network has no physical

meaning. In both cases, the question is how to set a proper number of RC pairs or, in the case

of 2D and 3D thermal conduction, how to choose a proper network structure at all.

In [61] the authors suggest a robust method based on computing a time-constant spectrum
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function connected to Foster network. A Foster network representation brings along an

infinite number of time-constants (each RiCi pair represents a time constant

) and so defines a continuous spectrum. The step response of a single

RiCi stage is . Hence, the unit-step response of the Forster network

can be constructed as a sum of these exponential terms:

(23)

After replacing Ri with a continuous spectrum, the above sum can be replaced by the

integral over the whole  range:

(24)

where is the time-constant spectrum function defined on the and

, logarithmic time axes. Lastly, the relationship between and spec-

trum can be expressed by convolution as:

(25)

where . Hence, from the measured step response T(t) we can

discretize to determine a suitable number of RC ladder elements in the Foster circuit

required to represent a (preferably multilayer) system prior to fitting. As the Foster net-

work has no physical meaning, it has become an engineering practice to convert it back

to Cauer form. This method also works for the 2D and 3D heat conduction, but is unfor-

tunately applicable only to single conduction path, i. e., to single-input-single-output

(SISO) problems.

For the multiple-input-multiple-output (MIMO) problems, not only the number but also

the structure of a compact RC ladder network must be specified. Recently, the authors

τ i Ci Ri⋅= τ

Ri 1 t– τ i⁄( )exp–( )

T t( ) Ri 1 t– τ i⁄( )exp–( )
i

∑=

τ

T t( ) R ξ( ) 1 t– ξ( )exp⁄( )exp–( ) ξd

∞–

∞

∫=

R ξ( ) z t( )ln=

ξ τ( )ln= T t( )

zd
d

T z( ) R z( ) w z( )⊗=

w z( ) z z( )exp–( )exp=
23



in [41] have suggested the application of evolutionary algorithms for setting the correct topol-

ogy of the compact model.

Special challenge in dynamic compact thermal modeling, is to construct a boundary condition

independent compact model, which would be reusable for different surroundings. This means

that if e. g., a chip producer does not know the conditions under which the chip will be used,

the compact thermal model must allow an engineer to research how the environmental changes

influence the chip temperature. The two European projects, DELHPI and PROFIT have

addressed the need to produce an accurate and boundary condition independent compact ther-

mal models of a chip [62] - [66], which would simplify the chip cooling simulation of coupled

thermal and fluidic domain. The chip benchmarks representing boundary condition indepen-

dent requirements are described in [67]. Related discussions can be also found in [68] and [69].

The goal of the PROFIT project was to extend the methodology to transient compact thermal

models by using methods from [61] and [70]. The current solutions from both projects are

mainly based on data fitting for the apriori chosen resistor network.

In spite of the large number of related methods suggested in the last years (an extensive review

can be found in [71]), the RC network extraction remains a non-automatic approach, which

requires a designer to choose the correct number and position of the RC ladders without strict

guidelines and to perform a time-consuming parametrization.

7.2 Modal Approaches

It is well-known from structural mechanics that an elastic string vibration under the action of

arbitrary external force, can be viewed as a linear combination of different vibrating modes,

each one corresponding to a resonance of the string. Although their number is infinite, the
24



actual response can be approximated quite well by considering only the few first harmonics.

This is how the elastic string, which is a distributed system can be compacted into a lumped

system with only a few degrees of freedom. In terms of the partial differential equation govern-

ing a string vibration this means that one has to compute the eigenvalues, which are the vibra-

tion frequencies, and the eigenfunctions, which are the spatial forms of vibrations for each

mode. Out of the first few eigenfunctions a compact model can be constructed.

In an analog manner, the temperature can be expressed as series expansion around a set of

“dominant” eigenfunctions Uj:

(26)

where Vj are jet unknown expansion coefficients. By substituting (26) into (5), multiplying it

by Vi and integrating, it is possible to get a reduced model [71] of the form:

(27)

where , , ,

.

Unfortunately, the analytical solution of the eigenvalues problem for heat conduction partial

differential equation (5) is available only for some simple geometries [72]. Hence, a first

approximation is to perform spatial discretization and to compute the eigenvalues and corre-

sponding eigenvectors of the system matrix of (14). To do this, we need to reduce (14) to a sin-

gle matrix representation as:

(28)

T r t,( ) U j r( ) V j t( )⋅
j 1=
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∑≅

C
*
dV t( ) dt( )⁄ K

*
V t( )+ s t( )=

Cij
* ρC pU iU j rd∫= Kij

*
U i κ U j∇( )∇ rd∫= si U iQ rd∫=

i j 1 k,[ ]∈,

AṪ T Bu t( )+=
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where and . The number of eigenvectors of A equals the

number n of finite element nodes. It is possible to reduce a system (28) by projection, whereas

a projection matrix is composed of r eigenvectors of A. Now the n-dimen-

sional equation (28) can be projected onto r-dimensional subspace as follows:

(29)

where Tr is a generalized variable vector. The question which remains is how to choose the

“dominant” modes (eigenvectors). For the defined thermal output (E is

either a vector or matrix), one can observe the transfer function , and

choose those poles (and associated eigenvalues) which are around the region of frequencies of

interest. Nevertheless, the choice of important modes still requires the designer’s action, which

makes a modal approach manual.

7.3 Model Order Reduction

The only group of DCTM methods which can be made fully automatic, i. e. only with the min-

imal intervention by the designer, are the formal mathematical model order reduction (MOR)

methods. Hence, among microelectronic and MEMS designers they are becoming increasingly

popular [73] - [93].

The ideas of mathematical model order reduction have been developed in the control theory

and are applicable to first order linear ODE systems, such as (14). The development of model

reduction of non-linear systems is still in its early stages [94], [33]. According to the control

theory, (14) should be written in the right-hand side state-space formulation as:

A K
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A V modal T r
˙⋅ ⋅ ⋅ V modal

T
V modal T r V modal

T
Bu t( )⋅+⋅ ⋅=

y t( ) E
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T
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(30)

where the system is treated as a black box, i. e. the internal state vector of temperatures

is not directly accessible to an external observer. The controller can influence the sys-

tem state through the input functions specified by the vector and distributed to the

internal nodes in accordance to the input matrix . As the number of inputs is typi-

cally small , the matrix B has a small number of columns. Furthermore, the observer is

interested in only a few outputs, specified by the vector . The required outputs are

selected from the complete state vector via output matrix . Hence, a high-dimen-

sional ODE system, governed by a small number of external inputs, has to be solved in order to

determine a small number of relevant outputs.

Let us also mention at this place the all-important transfer function of the system (30), defined

as:

(31)

where s is the laplace variable and I is a unity matrix of the dimension n. Although G(s) is a

relatively small matrix with p rows and m columns, its computation requires the inverse of a

large-scale system matrix A.

While searching for a possibility to reduce the number of state variables, i. e. equations in (30),

let us transform the state vector T using a transformation matrix  as follows:

(32)

Hereby z is the new state vector in terms of generalized coordinates expressed by the transfor-

mation matrix. It is important to understand that if T has the spatial and physical meaning as a
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vector of temperatures belonging to FE nodes, z has none of either. Rather, it is a vector of mul-

tiplication factors for the “global shape functions” given by the columns of matrix Vn.

To make this more clear, let us take a closer look at discretization methods where the tempera-

ture over the whole domain is approximated as a piece-wise linear combination over the ele-

ments:

(33)

where n is the number of free coefficients ci in each element (these can be the nodes tempera-

tures for example) and e is the total number of elements. A property of each local shape func-

tion Ni is that its value is one at the i-th node and zero outside the finite element. Within the

element it can linearly decay between one and zero. The only way to directly reduce a system

based on (33) is to coarsen the mesh, i. e. to chose the shape functions which cover several ele-

ments. This, however, results in a significant lost of precision (see Fig. 10 top).

On the other hand, each column of matrix Vn in (32) can be seen as a linear combination of the

local shape functions, i.e. as a global shape function over the whole heat transfer domain. This

gives hope that it may be possible to truncate some of the generalized coordinates z and there-

fore reduce a dimension of the system (32) without losing much accuracy (see Fig. 10 bottom).

Both ways of compressing information which are shown in Fig. 10 have their advantages and

disadvantages. By coarsening the mesh, one preserves the physical nodes, but looses the preci-

sion. By performing mathematical model order reduction, one looses the physical nodes, but

preserves accuracy (as will be explained below). Note that those two methods do not exclude

each other, but can rather be combined in order to maximally increase the efficiency.
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Let us emphasize that after the transformation, equation (30) changes to:

(34)

where are biorthigonal, which means that . For the external

observer (34) behaves exactly the same way as (30), i. e. one can easily prove that the transfer

function (31) does not change.

As already mentioned, model reduction is based on the idea that one can find such a transfor-

mation when one can accurately represent the state vector with just a few generalized coordi-

nates. In other words, a transformation exists when one can truncate most of the generalized

coordinates, that is to approximate:

(35)

through

(36)

with the error vector being small. This, on the other hand, changes (34) to a low dimensional

system:

(37)

with , , and . The number of inputs and

outputs in (37) is the same as in (30), whereas the number of equations (dimension of the state

vector) is smaller. This transformation is schematically shown in Fig. 11.
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The equation (36) can be also seen as a projection of a n-dimensional state vector to a r-dimen-

sional subspace , defined by the columns of matrix Vr. (37) is a projection of the whole

system (30). The output of the reduced system is, however, not the same as that of (30) or (34),

since we have introduced the truncation error . The goal of model order reduction is to mini-

mize this error either in the time domain or in the Laplace domain

, where the transfer function  of the reduced system is defined as:

(38)

There are several model reduction methods for linear ODE systems which produce small .

They take the system matrices A and B of the linear system as input and perform linear algebra

manipulations with them in a different manner to construct Wr and Vr. Let us emphasize that,

unlike the non-automatic RC-ladder approach, there is no explicit minimization procedure for

and in a way, one obtains the best topology of a reduced system simultaneously with its sys-

tem matrices. These methods and their most important properties are summarized in Table 1.2.

Advantages Disadvantages

SVD-based (Balanced
Truncation Approximation,
Singular Perturbation
Approximation, Hankel Norm
Approximation)

have a global error estimate, can
be used in a fully automatic
manner

computational complexity is

, hence can be used
only for systems with less
than a few thousand
unknowns

SVD-Krylov (low-rank
Grammian approximants) and
matrix sign function methods

have a global error estimate and
the computational complexity is

less than

currently under development

Padé approximants (moment
matching) via Krylov subspaces
by means of either the Arnoldi
or Lancsoz algorithm

computationally very
advantageous, can be applied to
very high-dimensional 1st order
linear systems

do not have a global error
estimate. Hence, it is
necessary to select the order
of the reduced system
manually

Table 1.2Methods for model order reduction of linear dynamic systems.
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The most advanced MOR methods are established by control theory, which allows us to make

the strong statement that model reduction of a linear dynamic system is solved in principle.

The control theory methods [97] are based on singular value decomposition (SVD) and offer

guaranteed error bounds for the difference between the transfer function of the original high-

dimensional and reduced low-dimensional system. Model reduction based on these methods

can be made fully automatic. A user merely has to set an error bound, and then the algorithm

will find the smallest possible dimension of the reduced system which satisfies that bound.

Alternatively, a user specifies the required dimension of the reduced system and then the algo-

rithm estimates the error bound for the reduced system. Unfortunately, the computational com-

plexity of current implementations is of order , with n the order of the large system of

ODEs. In other words, even though the theory is valid for all linear dynamic systems, practi-

cally we can use it for small systems only. The SVD-Krylov methods, based on low-rank

Grammian approximants [98]-[101], and the matrix sign function methods [102] have resulted

from the efforts to find computationally effective strategies in order to apply control theory

methods to large-scale systems. However, they are currently under development and we will

have to wait for the experience to grow in this field. Most of the practical work in model reduc-

tion of large linear dynamic systems has been tied to Padé approximants (so-called moment

matching) of the transfer function via Krylov subspaces [103], [104] by means of either the

Arnoldi or the Lanczos process. In the literature, there are some spectacular examples where,

using these techniques, the dimension of a system of ordinary differential equations was

reduced by several orders of magnitude, with minimal lost of precision. The disadvantage is

that Padé approximants do not have a global error estimate, and hence it is necessary to select

the order of the reduced system manually [105]. Some engineering approaches on how to auto-

O n
3( )
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matically estimate the reduction error are given in [106].

Numerical results for small systems show that Hankel singular values (system properties,

which reflect the contributions of different entries of the state vector to system responses [108],

[109]) decay very fast for the discretized heat transfer equation (see [107] and [110]). This can

be viewed as an empirical proof that just a few global functions are enough to accurately solve

the heat transfer problem and the only question is how to find them, i. e., how to define matrix

Vr.

Model order reduction based on the Arnoldi algorithm, on the other hand, allows us to restore

the whole domain. In a way, it can be viewed as a fast integration procedure.

Finally, let us get back to the physical sense of the internal nodes in the reduced models. The

goal is to approximate the original system, which means the smaller error, the more physical

sense. If we think of RC parameters as the amplitudes for global functions, then any network,

including the Foster RC-network, has a valid physical sense for thermal modeling.

However, conventional model reduction fails to preserve parameters during model reduction

process. This limits severely its applicability for the creation of boundary condition indepen-

dent reduced models or for the design flow and system level simulation. In our knowledge, the

first work on parametric model reduction has been presented by Weile at al [76] in 1999 and

applied to describe frequency depended surfaces in [77]. This approach has been generalized

from two to many parameters in [78] and in parallel re-discovered in [79]-[81]. An empirical

solution to a similar problem has been suggested in [82] and an alternative algorithm in [83].

Note that different authors use different names for the same method: multiparameter model

reduction in [78], multidimensional model reduction in [79] and [80] and multivariate model
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reduction in [81]. We refer to parametric model order reduction. In [81][83][84], this approach

has been successfully applied to a thermal problem when film coefficients have been preserved

as symbols in a reduced model.

In case when the material properties in the heat transfer equation must be kept as temperature

dependant and linearization is not possible, one can use nonlinear model order reduction. The

wide spread approach here is a proper orthogonal decomposition (POD) which is also known

as Karhunen-Loéve transformation [85]. In POD, in order to find an appropriate low-dimen-

sional subspace (36), one uses the results of the full order simulation of the original dynamic

system (30). The first step is to perform one or more simulations of the full model and to col-

lect a series of so-called snapshots of temperature distributions T(ti) which correspond to dif-

ferent simulation times ti of (30). This is the main disadvantage with respect to linear systems,

where the model reduction process is based on the system matrices only, i. e. without perform-

ing a full model simulation. Furthermore, for linear systems, it was possible to perform model

reduction for any input function, whereas for nonlinear systems it is necessary to choose the

most typical input functions and a reduced model depends on them. Unfortunately, there exist

no formal rules on how to choose the number of snapshots or at what times they should be

taken. Nevertheless, there are already examples of successful application of POD to thermal

[86], [87] and coupled-domain MEMS models [88]. The most recent development in nonlinear

model order reduction is the trajectory piecewise-linear MOR technique [89] which is based on

Arnoldi algorithm and the weighted combination of the linearized macromodels at different

linearization points. It has been recently applied to heat-transfer macromodeling of MEMS

[33].
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8. Discussion and conclusion

In this review we have highlighted the importance of heat transfer modeling, which is presently

a central part of the electro-thermal simulation of microsystems. We have discussed in which

cases it is possible to decouple the heat transfer partial differential equation from other physi-

cal domains, in order to be able to solve it separately. Unfortunately, analytical solutions are

only available for simple geometries, whereas either approximations or numerical methods

must be used for complex geometries.

However, the numerical solution of the heat transfer PDE via e. g. finite elements is often

impractical or even prohibitive if we want to simulate the whole system with a large number of

interconnected devices. Again, the number of resulting ordinary differential equations for a

single device easily exceeds 100,000. Even by using a domain decomposition technique on

parallel computers, this huge number of unknowns demands large resources of CPU-time and

memory. Hence, a reduction of the number of unknowns to a lower-dimensional system,

known as dynamic compact thermal modeling has become a standard for microsystem simula-

tion. We recommend a DCTM via model order reduction, because it presently offers an accu-

rate and effective solution for microsystems and enables an automatic system-level modeling.

A schematics of the discussed and recommended researched paths is shown in Fig. 12.

To this end, we have presented the conventional, non automatic approaches (RC-ladder net-

work), semi automatic approaches (modal approximation), and the increasingly popular model

order reduction approaches, which can be made fully automatic. However, they all consider the

DCTM of a single device only. Since microelectronic and MEMS are usually composed of

subsystems that are interconnect to array structures for example, it is desirable, especially for a
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large number of subsystems, to extract a heat-transfer macromodel of each subsystem on its

own and then to couple them back together. Some works on this topic can be found in [111] -

[113].

At the end of this review, we would like to highlight the possibility of solving the so-called

inverse problem by model order reduction. Often, it happens that a MEMS designer has the

measured data, but is uncertain about the material parameters (for example the heat capacity

and thermal conductivity of thin film materials, which strongly depend on fabrication condi-

tions). In such a case, it is possible to use model order reduction within a fast design alteration

cycle (see Fig. 13) to extract the true parameter values via optimization. Fig. 13 shows that

MOR allows the change of the input function on the level of compact model. It further allows a

quick design change without a time-consuming recomputation of the full model. For example,

if we change material parameters, we have to built a new finite element model. Luckily, due to

MOR we are able to avoid its slow recomputation, and can work with reduced model instead.

However, the main goal of the future research should be a parametric model order reduction

which would allow major design changes solely within a reduced model.
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Captions for figures

Fig. 1 Photomicrograph of a single microhotplate element from [31].

Fig. 2 An example of electro-thermal embedded actuation: (a) original configuration; (b)

deformed configuration superimposed on the original. From [32].

Fig. 3 Functioning principle of a thermopneumatic microvalve from [42].

Fig. 4 Qualitative importance of heat transfer modeling for different types of MEMS devices.

Fig. 5 Sequence of the coupled electro-thermal simulation.

Fig. 6 Schematics of coupled electro-thermal simulation at system level for the resistively

heated microsystems. Homogeneous heat generation is assumed.

Fig. 7 A parallel RC circuit.

Fig. 8 Thermal impendance network for a tetrahedral element for use away from the bound-

aries, from [60].

Fig. 9 Cauer RC ladder network (left) and Foster network (right).

Fig. 10 Order reduction via coarsening the mesh (top, from [95]) and via truncating the gener-

alized coordinates (bottom, from [96]).

Fig. 11 Schematics of the system before and after model reduction step.

Fig. 12 Schematics of discussed and recommended (bold) research paths in electro-thermal

modeling of microsystems.

Fig. 13 Application of MOR to parameter extraction in MEMS design process.
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