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Outline

= |ntroduction to model reduction
= Model reduction for acoustics

= Case study: loudspeaker sound field
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Model Order Reduction

= Relatively new technology

= Solid mathematical background: Approimation

= Approximation of large scale of Large-Scale
dynamic systems Dynamical Systems

! ! ! . I I ‘ I
» Harmonic or transient simulation

= Dynamic simulation

Athanasios C. Antoulas

= |ndustry application level:
= Linear dynamic systems only
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From Finite Elements to System Simulation
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= Electrothermal Simulation with IGBTSs.
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Model Reduction as Projection

= Projection onto low- EX+ Kx=Bu
dimensional subspace

.+ -I=
X=VzZ+¢

I V'EVz+V'KVz=V'Bu
= How to find -I+.I=.I
subspace?
= Mode

superposition is
not the best way
to do it.
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Implicit Moment Matching

= Padé approximation

= Matching first moments for the
transfer function

Ex+ KX =Bu
H(s)= sE+K °B
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Krylov-subspace methods for reduced-order modeling
in circuit simulation
Rodad W Freun
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= |Implicit Moment Matching: so=0
= via Krylov Subspace

V =span {S(K_IE,K_lb)}
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MOR for ANSYS: hiip://ModelReduction.com

H Simulink,
ANSYS Model | & £8 Rudnyi Simplorer,
: Fast Simulation VHDL"AMS

of Electro-Thermal
MEMS

Efficient Dynamic
Compact Models

l My
)

=

UONRINUIS IS

Small dimensional
matrices

MX+EX+Kx=BU | jnear Dynamic :
( v Cx System, ODES MOR Algorithm

Current version 2.5
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http://modelreduction.com/

HDD actuator and suspension system

= Prof J. S. Han.
Transactions of the
KSME, A, Vol. 31,
No. 5, pp. 541-549,

Frequency [hz]
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Model Reduction as Fast Solver

= Simulation of the reduced

model Is a few seconds.

build a parametrized FE model
with parameters k and r"Cp

. . conventional / \‘ suggested
= Arnoldi Process is fast: approach __ a¢T DA _______ sopoach
= Transient and harmonic ¥ purryree e r
response analysis for the cost : pf the ful-scale FE model | lime integration
comparable with that of a | K |—“fthe bl

static solution. 777 \ / """""""

evaluate the objective
function

el L

= |t is advantageous to use
MOR even the reduced model
IS used only once:

change parameter
values

convergence criterum
fulfilled?

yes

= Design, m

= Geometry optimization.
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Finite Element Discretization for Acoustic with FSI
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FLUID29/FLUID30 in ANSYS

The element size should be smaller than wavelength
= High dimensional models

Unsymmetric matrices i 3. scr Conmur, 5 0o Sacy il and Appld Mchemas

DIMENSION REDUCTION OF LARGE-SCALE SECOND-ORDER
DYNAMICAL SYSTEMS VIA A SECOND-ORDER ARNOLDI

Not proportional damping: T METHOD!
Second Order Arnoldi ZHAOGUIY BN D PAHCTENGH P
(SOAR) Ayl S b it e v e o s Rk e

\ =econd-or l \ ok | ‘)\l U] et he s tsex] to generate an orthonorn | he of t l proje "
«ll'l-‘llu‘n' ['he reduced systom not "lll\ preserves the second-arder structure n | » hins the =ame
ordor of approximation as the standoard Arpoldi-based Krvlaoy '-||!)-~"»>|- |.,.-'I,..4I ji I|| earization

I'he superior numericol properties of the SOAR-based method are demonstrated by r.\:v||u|-l|-~ from
structural dynnmics and microelectromechanion] svsters
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Thesis

Krylov Subspace Based Direct
Projection Techniques for Low
Frequency, Fully Coupled, Structural

Acoustic Analysis and Optimization.

R. Srinivasan Puri

A thesis submitted in partial fulfillment of the
requirements of Oxtord Brookes University

for the degree of Doctor of Philosophy.

13th March 2008
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Adhesive Bonded Joint Benchmark

= Mechanical Structure - SHELL181
= Adhesive — SOLID45

Fluid — FLUID30

= Single excitation point

Global and local damping
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Comparison
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Timing

= Problem in ANSYS
» 37988 elements, 38712 nodes, 62581 free DoFs

= Full solution in ANSYS for 200 frequencies
» 16695 s — 4.6 hours — 83 s per frequency
= Proportional to the number of frequencies

= MOR for ANSYS
= Reading ANSYS files -3 s
= Model reduction — 170 s
= Proportional to the number of vectors

= Simulation of the reduced model
»4s

sivictr/S CRADFEM
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Fluid Structure Interaction at Acoustic Level

ANSYS 90.000 DOFs” MOR 100 DOFs
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By courtesy of Voith Siemens Hydro Power Generation
GmbH & Co. KG
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Loudspeaker — Calculation Scheme

i(t)
— Magnetic field
u(t) 1 N = 04
b V x (—V X A)
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ot
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volume force f.; = J x (V x A ) and  motional emf-term ~ Q‘—’x( vV x A)
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Tymphany Speaker - Modeling

= |mport of geometry data into ANSYS Workbench
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= Geometry repair and export to ANSYS classic for further
processing with NACS interface
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Tymphany Speaker

Quartermodel Cross-section model
Typ.: nonlinear, < 200.000 el. Typ.: linear, > 1 Mio. el.

acoustics

TYPE UM

/ ABCs

1 m dist.

mechanic

magmec

Lo

magnetic

Assumption: baffled setup

CADFEM



Some pictures from ANSYS
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Procedure

= Two cases:
= Undamped: Damping only due to the adsorbing BC.
= Damped: Materials damping in the loudspeaker.

= ANSYS and MOR:
= Linux, 4 processors, 16 Gb RAM
= ANSYS: 60 frequencies in the range 0-12000 Hz
= The mechanical force does not depend on frequency (only FSI)
= Electrical properties of the loud speaker were neglected

= Expansion point is 60000 rad (omega = 2 Pi f)
= Dimension of the reduced model is 1000

= Postprocessing in Python on Windows
= 600 frequencies in the range 0-12000 Hz
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Phase Angle
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I Undamped: Phase Angle
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Relative Difference for Pressure
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Undamped: Convergence (relative error for pressure)
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I Damped: Convergence (relative error for pressure)
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Timing

= Problem in ANSYS
» 1170389 nodes, 1176817 DoFs

= Full solution in ANSYS for 60 frequencies
» 13498 s — 3.8 hours — 224 s per frequency
= Proportional to the number of frequencies:
= 600 frequencies is about 38 hours

= MOR for ANSYS
= Reading ANSYS files—10 s
» Model reduction — 11927 s — 3.3 hours

= Simulation of the reduced model (Python, SciPy, 1 processor)
= 300 s

sivictr/S CRADFEM
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Conclusion

= Model reduction is working for the case study, but the convergence is
rather slow.

= |t is still faster than the full solution in ANSYS though.
= Further would-be research:

= Multiple-expansion points?
= [maginary expansion point?

Metr/ CADFEM
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