
Krylov Subspace Based Direct

Projection Techniques for Low

Frequency, Fully Coupled, Structural

Acoustic Analysis and Optimization.

R. Srinivasan Puri

A thesis submitted in partial fulfillment of the

requirements of Oxford Brookes University

for the degree of Doctor of Philosophy.

13th March 2008



I dedicate this very small piece of work to my dearest Ms. Maruxa M. R.



Abstract

Noise, Vibration and Harshness (NVH) is a critical consideration in the design of

automotive and aerospace vehicles for comfort, and fatigue of components arising

from interior structural and acoustic pressure fluctuations due to external structural

or acoustic loading. In the low to mid frequency range, current NVH models, ob-

tained by direct, unsymmetric, coupled Eulerian Finite Element discretization (often

known as the Cragg’s u/p unsymmetric formulation) cannot provide a highly accu-

rate and computationally efficient lower order model suitable for iterative structural

and acoustic design modifications, or for example control applications via state-space

techniques. The task of generating an accurate and a computationally efficient lower

order model is further complicated due to the addition of non-trivial trim details such

as frequency dependent damping resulting in an explicit participation of the damp-

ing matrix in the coupled higher dimensional system. In this thesis, lower order,

fully coupled, structural-acoustic models are developed using a systematic dimen-

sion reduction procedure from the higher dimensional coupled structural-acoustic

system to enable efficient, fully-coupled, undamped and damped structural-acoustic

analysis and optimization.

The proposed dimension reduction techniques do not require the solution of the

traditional coupled or uncoupled eigenvalue problems; but instead are based on im-
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plicit, low frequency moment matching of the coupled higher dimensional system

matrices via Krylov subspaces. This method matches the input to output character-

istic of the higher dimensional structural-acoustic model and constructs a reduced

order model by removing the uncontrollable, unobservable and weakly controllable,

observable parts without affecting the transfer function of the coupled system. The

new approaches for interior, fully coupled, structural-acoustic analysis are based on

the computation of Arnoldi vectors using one of the several available Arnoldi vari-

ants; which essentially compute orthogonal vectors belonging to the induced Krylov

subspaces. As a consequence, it turns out that a single projection framework is

suitable for all the three possible damping formulations arising in interior structural

acoustics: undamped, constantly damped and linearly damped material models.

To achieve the projected form, either second-order or state-space, five different ap-

proaches based on the Arnoldi process are proposed. The proposed reduction tech-

niques are applied to six different test cases, ranging from a two dimensional fluid

filled Benchmark problem to a realistic scaled vehicle cabin incorporating adhesively

bonded joints. In the numerical test cases, both air and water are considered for the

fluid medium to test the accuracy and computational efficiency of moment-matching

Arnoldi formulations for weakly and strongly coupled problems. The structural and

acoustic quantities of interest are compared with the direct and uncoupled modal

formulations, where available. Structural-Acoustic reciprocity is considered as a

validation tool for coupled models with acoustic excitation. It is shown that the

moment matching reduced order models preserves the underlying second order form

and the solution state accuracy whilst saving computational times of at least 1-2

orders in magnitude.

Further, a fast and efficient optimization framework is developed to optimize the

lamination angles of a composite structure for reduced interior noise at a representa-
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tive location in the fluid domain. In this vibro-acoustic optimization framework, the

primary cost functions are derived based on the reduced order structural-acoustic

models obtained via the Arnoldi based projection formulation to save computational

time whilst maintaining the desired accuracy of required states. The optimization

method in itself is a tailored version of the derivative-free Mesh Adaptive Direct

Search algorithm which allows for both local and global exploration of the design

space at any given iteration of the optimization process. An adaptation to this

method, incorporating the Latin Hypercube Sampling technique is investigated as

a part of the global search step to increase computational efficiency and avoiding

being trapped at local minima. It is numerically demonstrated that by varying the

lamination angles of a composite structure, it is possible to reduce interior noise

levels.
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1. Preliminaries

1.1. Background

NVH stands for Noise Vibration and Harshness and is an industry term associated

with the prediction and active/passive treatment of vibration and audible sounds.

Findings show that NVH not only causes annoyance and fatigue, but also affects

the efficiency and health of people (Leslie and Doelle 1972). NVH is very important

from an engineering and customer satisfaction point of view and thus a very signif-

icant issue in automobile and aerospace cabin interior design. The concerns have

primarily been those of speech interference, crew fatigue, and passenger comfort, the

latter arising primarily in for example private/business jets and first class accom-

modations on commercial airlines (Fernholz and Robinson 1998). Though there are

currently no regulations on interior noise levels, airline operators require guarantees

from manufacturers on these noise levels. In automobile design, during earlier years,

NVH was primarily investigated at the end of the production line and additional

damping (vibration absorbing) materials were added to reduce noise and vibration

based on user tests on road conditions. However, today, in a passenger car, the NVH

performance is one of the most important parameters that determine the quality of

passenger comfort in manufactured car. In fact, NVH is rated as among the top five

priorities by automobile manufacturers. Due to the nature of the current automotive

business, where competition is very high, manufacturers are today striving to bring

NVH levels down as low as possible.
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Typically, the parameter of interest used to judge the NVH performance of an

automotive/aerospace interiors is the pressure or velocity response at a given loca-

tion inside the fluid filled cabin or the enclosing structure to a known excitation.

This relationship between the response and excitation is often called Noise Trans-

fer Function (NTFs) or simply Frequency response Functions (FRFs). In aerospace

and defence applications, such as an aircraft, launch vehicle or submarine design,

predicting acoustic pressure response of cabin interiors is almost inevitable, since

these also have a critical influence on aircraft satellite communications and fatigue

of components due to acoustic loading (Crane et al. 1997; Pirk et al. 2002). For

example, around 40 % of the mass of a satellite is present just to survive the harsh

launch environments (Henderson et al. 2003). With the advent of modern com-

puters and powerful instrumentation, it is now become common practice for design

engineers to pay much attention to the NVH performance of cabin interiors at the

design stage of the product development process.

Over the last twenty five years, a large amount of work has been published ad-

dressing the vibration and acoustic characteristics of vehicle interiors. This has

included both numerical and experimental techniques or a combination of them.

Today, the NVH behavior of a typical automotive body is typically classified into

three distinct descriptors, based primarily on their transmission phenomenon and

frequency range. This is tabulated in Table:[1.1]. This distinction can be attributed

to the fact that the vibro-acoustic behavior of the vehicle structure under investiga-

tion tends to be different in all three frequency ranges. As a result, there does not

exist a single prediction technique which can be applied to a complex structure such

as a trimmed automotive vehicle to predict the vibro-acoustic behavior in all three

frequency ranges. In fact, this is true for most real life problems.
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Descriptor Phenomenon Frequency Range

Low Frequency Structure borne 0 - 100Hz.

Mid Frequency Structure and Air borne 100 - 250Hz.

High Frequency Air borne >250Hz.

Table 1.1.: NVH description based on Phenomenon and Frequency Range

At low frequencies, an exact solution is sought for a set of governing equations

arising from the discretization of the structural and acoustic fields into mass, stiff-

ness and damping matrices in space, subject to a number of boundary conditions

including enforcement of coupling between the fluid and structural domains. This

is often achieved using well known coupled element based deterministic techniques

such as the Finite Element Method (FEM), Boundary Element method (BEM) or

a combination of them leading to coupled FEM/FEM or coupled FEM/BEM based

procedures. Common to these methods, the response is described in terms of a large

number of trial functions over various local elements in the computational domain.

These trial functions, also known as shape functions are chosen to interpolate be-

tween the nodal values of response. The shape functions for the elements are chosen

such that they have a unit value at each node (In the FEM, a node is described by

its degree’s of freedom), and zero at all others. Since the structural and acoustic

behavior at low frequencies is characterized by long wavelengths (λ = c/f , where λ

is the wavelength, c the speed of sound in the fluid and f is the frequency in Hz.),

the use of lower order polynomials as shape functions often yields acceptable levels

of response solution accuracy. This is often the case, when in addition to FEM/BEM

based techniques, model updating techniques (Mottershead and Friswell 1993) based

on experimental modal models are applied to the structural modal problem.

However, as the excitation frequency is increased, it can be observed that the

response becomes increasingly sensitive to minor structural modifications (Estorff
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2003). Such a behavior is often associated with shorter fluid/structural wavelengths

and very irregular (and higher) modal density (modal density is defined as the num-

ber of modes in a given frequency band) resulting in highly complex mode shapes at

higher frequencies. This in turn results in a large spatial variation in response across

the frequency domain. In order to adequately capture the dynamic behavior at such

higher frequencies, a large number of elements accompanied by a fine frequency res-

olution is often employed to compute the response via the coupled FEM/FEM or

FEM/BEM based procedures, assuming the computational feasibility within avail-

able resources. For large scale scale systems such as an automotive or an aerospace

interior cabin, beyond a certain frequency band, the use of such deterministic tech-

niques often become questionable due to the huge computational time required to

solve the discretized matrix equations and the validity of such computed results

(Shorter 1998).

To counter the problem at very high frequencies1, researchers have developed en-

ergy based methods, based on the principle of conservation of energy, to predict the

statistically time/frequency averaged response, on the fluid or the structural domain.

One popular method among the energy based methods is the predictive Statistical

Energy Analysis (pSEA). In this method, the structural and the fluid domains are

discretized into a number of subsystems, and the response is described in terms of

time averaged energy contained within each of the subsystems (Lyon and DeJong

1995). On the other hand, the excitation is described in terms of time average input

power applied to the subsystems. The two important parameters in SEA, namely,

the Coupling Loss Factors (CLFs) - which describes the energy transfer between dif-

ferent subsystems, and Damping Loss Factors (DLFs) - which describes the energy

loss and their interactions between different subsystems. The computation of these

parameters for a complex structure such as an automotive/aerospace cabin structure

1This is typically between 250Hz. to 5KHz. for automotive NVH applications.
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involves either solving discretized structural equations via the FEM , calculation of

radiation/transmission efficiencies (e.g. the wave approach for CLF) or measuring

them using Experimental SEA (eSEA).

In the mid-frequency range, none of these above mentioned techniques alone have

alone been found to be adequate enough predict the response accurately. This has

often been attributed to the fact that the response is a combination of longer and

shorter wavelengths, making them fuzzy, rendering both the FEM and SEA imprac-

tical. Although the use of deterministic techniques are theoretically feasible to be

applied in this frequency range, the computational time required to solve the dis-

cretized matrix equations, prohibit its subsequent use. In addition to this, since

the response becomes increasingly sensitive to minor structural modifications (e.g.

material properties), model updating is often employed, requiring re-running of the

updated deterministic models to predict structural/acoustic response. In the past,

two approaches have been used to tackle this problem: (a) Decrease element size

and extend the use of deterministic techniques to the mid-frequency range and av-

erage the response (b) Derive SEA parameters from deterministic or experimental

techniques and use them in SEA models or model stiff parts of the structure as a

global system and the rest as the local system (based on wavelengths), leading to

hybrid FEA-SEA methods (hSEA) (Langley and Bremner 1999; Jayachandran and

Bonilha 2003).

In general, the following qualitative definitions hold for low, mid and high fre-

quency dynamic response analysis (Soize et al. 1992; Rabbiolo et al. 2004):

(a) Low frequency : The response spectra exhibits strong modal behavior.

(b) Mid frequency : The response spectra exhibits high irregularities, indicating

irregular modal density. Boundary conditions, geometry and materials play
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an important role.

(c) High frequency : The response spectra are smooth (as a consequence of cance-

lations), indicating high modal density. Boundary conditions, geometry, and

material are no longer important.

Once the response is computed, intelligent strategies such as active control and

passive damping can be employed to modify parts of the transfer function for better

acoustic response in the audible frequency range. Typically, the steps involved can

be summarized as shown in Figure:[1.1].

At this point, it is worth reminding the reader that, manufacturing variability

is also a significant variable which dictates the choice of prediction methods for

structural-acoustic analysis. In general, the experimental noise transfer function

(Force/Pressure) variability increases with increasing frequency (Wood and Joachim

1984; Kompella and Bernhard 1993). Therefore, care must be taken to identify lim-

its of the involved frequency range; which in turn depends on the characteristics

of the coupled problem (such as dimensions, fluid mass, thickness of the structural

panels) and prediction methodologies.
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                            Build model with                                          Local output                                   Averaged output                                   
                                local input variables                                            variables                                          variables    

Solution Sequence

DETERMINISTIC
Averaging

Averaging

STATISTICAL
Solution Sequence               Build model with                                           Averaged input                                   Averaged output                                   

                 local input variables                                          variables                                              variables    

NVH Refinement via Transfer Function Modification

Figure 1.1.: Methodology for predictive NVH refinement.
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1.2. The need for fast structural acoustic analysis

Even with the advent of modern computers and cheaper computational power, the

simulation of a complex structure such as a vehicle/aerospace cabin often involves

tedious and time consuming modeling procedures leading to higher dimensional mod-

els. Today, it is common practice to investigate NVH behavior using models which

range up 50,000 to 1Million Degrees of freedom (DOFs), often requiring a solution

to a set of linear equations [A] . {x} = {b}, for every a single frequency evaluation

(when a solution is required for an entire frequency range, a frequency sweep is ex-

ecuted). Here,[A] arises from the discretization of the coupled formulation and of

an order equal to the number of DOFs, {x} is a vector of states to be found and

{b} arising from the forcing function of the coupled formulation. The simulation

of such higher dimensional models in many cases is prohibitive or even impossible.

This is often the case when repeated analysis is required to calculate the best design

parameters for good NVH characteristics over the entire applicable frequency range.

Typically, in automotive and aerospace applications, design engineers are inter-

ested in the 0 - 5KHz frequency range. Since there does not exists a single prediction

tool to predict the NVH behavior in all three frequency ranges, design engineers are

often forced to resort to a combination of prediction techniques, involving both de-

terministic and statistical methods. Although active research in the mid-frequency

range is giving rise to hybrid techniques such as hSEA, it has now become more

common practice to investigate the mid-frequency range, by extending the analysis

frequency range of deterministic and statistical energy based methods in order to

cover the mid-frequency gap. An illustration of techniques for interior NVH behav-

ior prediction based on frequency range is shown in Figure:[1.2].

In deterministic techniques, the analysis range is increased by introducing more
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Figure 1.2.: Ideal and current trend for NVH prediction

elements (In FEM, an element is characterized by its associated nodes) to balance

the element to wavelength ratio at higher frequencies (Wolf 1977; Atalla and Bern-

hard 1994; Desmet 1998), leading to models of much higher dimension than required

to investigate the low-frequency band by itself. In energy based methods, the pa-

rameter Modal Overlap Factor (MOF) is used to determine if a particular coupled

system qualifies for analysis via SEA. Essentially, MOF is the ratio of the bandwidth

individual resonance peaks to the average spacing of adjacent resonances. In some

sense, MOF measures the smoothness of the FRF. A MOF value greater than one,

indicates that several modes make a significant contribution at any given frequency

and the total response can be governed by a summation of these contributions. It is

worth pointing out that a high modal overlap factor implies either high damping or

high modal density2 or both (Yap and Woodhouse 1996; Hopkins 2002). In general,

it is well accepted that the uncertainty of SEA predictions may be unacceptably

2Note that in the pSEA method the modal densities are often obtained using analytical expressions
(as opposed to numerical e.g. the FEM) for simple structures. These expressions are incorrect,
since they do not take into account the boundary conditions.

9



1. Preliminaries

high when the modal overlap factors of the uncoupled subsystems are much lower

than unity3(Fahy and Mohammed 1992). However, more recently, it has also been

experimentally demonstrated that SEA based methods could be applicable to cou-

pled structural-acoustic system with a MOF value less than unity - implying useful

SEA/hybrid SEA based predictions at the mid frequency range e.g. see Marberg

and Miasa (2002), Lalor and Priebsch (2007). Ideally, power-balance equations are

derived for coupled structural-acoustic models utilizing information from the input

power, CLF’s, DLF’s and the response is written in terms of energy parameters -

which are later converted to averaged velocity or pressure response on the structural

or fluid domains respectively. For a detailed discussion on the fundamentals of the

SEA method, the reader is referred to Lyon and DeJong (1995), Keane and Price

(1997).

In short, although SEA predictions are computationally very cheap compared to

solving coupled fluid-structure equations via deterministic techniques, SEA’s un-

derlying assumptions regarding modal density render predictions that are invalid

in the low frequency range. The reader is referred to (Plunt 1993) for a short re-

view on use and misuse of the SEA method. As mentioned earlier, a sufficiently

refined deterministic coupled model would make response predictions possible up to

100-500 Hz thereby providing a very useful supplement in the low to mid frequency

range. Therefore, techniques to enhance computational efficiency (in terms of so-

lution time and computational resources required) of the deterministic techniques

whilst preserving the desired solution accuracy would save both time as a result of

fast broadband NVH analysis.

The tremendous growth in both active and passive damping technologies, involv-

ing novel materials such as multi-layered composite or piezoelectric materials has

3From current literatures, it is not clear by how much this empirical value should be lower (than
unity) to render SEA predictions impractical.
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Figure 1.3.: Launch vehicle fairing struc-
ture (NASA 1996).

  

            
           

          
     

 
    

            
        

        
         

        
          
          

        
        

      
         

          
         

           
         

     
      

        
         
        

       
       

         
         

        
          

  

 
        

 
             

         
        
         

       
         

          
        

             
         

       
           

         
          

          
          

         
         

          
           

            
         

         
       

 

 
          

 

 
          

Figure 1.4.: Noise control of fairing by us-
ing acoustic heavy blankets.

made the design of complex structures with ideal NVH criterion ever more compli-

cated. Figures:[1.3,1.4] illustrate the use of passive damping technology (in this case

heavy blankets) for a launch vehicle fairing structure. Firstly, tremendous effort is

required to identify the right modeling methodology associated with the incorpo-

ration of such damped structures on vehicle or a satellite. Often, such modeling

techniques involve the use of higher order solid elements thereby further increasing

computational burden. Secondly, the number of design parameters (such as stack-

ing sequences on a composite structure) available to tailor the NVH performance

is far greater than traditionally used isotropic materials such as mild steel. Lastly,

since passively damped materials inherently exhibit viscoelasticity, both in the tem-

perature and frequency domain, the analysis of structures incorporating damped

materials need to carried out for different temperatures and solving updated matri-

ces in the frequency domain.

This means that, repeated simulation is inevitable in order to identify the best

design parameters in the case of actively or passively damped structures. This often

forms the basis for optimization or a sensitivity analysis to determine the important

parameters which significantly alter the NVH performance of the coupled system un-

der investigation. For example, an optimization of a scale model of a launch vehicle
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fairing carrying tuned mass dampers and Helmholtz resonators to reduce payload

noise required around 18000 function evaluations (Howard et al. 2006). The steps

involved in a broad band structural-acoustic optimization is shown in Figure:[1.5].

Therefore, it is often concluded that one of the big challenges in fully coupled

vibro-acoustic modeling is the development of new deterministic prediction tech-

niques and solution procedures, which provides accurate prediction results with an

enhanced computational efficiency, compared with existing element based prediction

procedures (Desmet 1998; Desmet and Vandepitte 2005; Desmet and Vandepitte

2002).

Precisely speaking, fast structural-acoustic coupled analysis would serve the fol-

lowing purposes:

(a) Assist in simulation speed up necessary to analyze NVH behavior in the low

and mid frequency range, especially when a frequency sweep over a wide fre-

quency band is required.

(b) Save computational time in the case of optimization or sensitivity analysis of

structural and acoustic systems.
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Build Structural
Acoustic Model

Deterministic
Techniques

Statistical
Techniques

Compute combined
Objective Function
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High freq.

Broad band structural-acoustic optimization

Low/Mid frequency High frequency

Figure 1.5.: Strategy for broadband NVH optimization.
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1.3. Original Contributions of this thesis

(1) To alleviate the computational burden associated with a direct frequency res-

olution, the uncoupled and coupled modal formulations are often utilized to

generate reduced order models. These modal methods and their drawbacks

are well documented (Desmet 1998; Tournour and Atalla 2000; Ohayon 2004).

More recently, however, generating reduced order models via implicit low fre-

quency moment matching, has received considerable attention among mathe-

maticians, circuit simulation and the control theory community (Freund 2000;

Bai 2002). It has been shown in various engineering applications (Grimme

1997; Antoulas and Sorensen 2001; Willcox 2000; Willcox et al. 2002; Bechtold

et al. 2005a) that the time required to solve reduced order models by match-

ing some of the low frequency system moments is significantly reduced when

compared to solving the original higher dimensional model, whilst maintaining

the desired accuracy of the solution. Therefore, in this thesis, an attempt is

made to exploit such moment matching based direct projection approaches,

which essentially start off from an input-output problem formulation to effi-

ciently construct a Padé or a Padé type approximant. As a result, new meth-

ods to generate accurate and efficient reduced order models for fully coupled

structural-acoustic analysis via Krylov Subspace techniques are presented. In

particular, the thesis focuses on structure preserving, moment matching trans-

formations for dimension reduction.

(2) Four different algorithms for efficient construction of the reduced basis consist-

ing of vectors belonging to the standard and second order Krylov subspaces are

studied. The algorithms of interest are: One Sided Arnoldi (OSA), Two-Sided

Arnoldi (TSA), Multi-point Arnoldi (MP-TSA) and the Two-Sided Second

order Arnoldi (TS-SOAR) process. The suitability and capability of these
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processes for fully coupled structural-acoustic systems, involving undamped,

constantly damped and linearly damped material models are studied. It is

shown how to construct a structure preserving, moment matching, reduced

order model from a given coupled higher dimensional system under any of the

above damping model scenarios. This has been achieved by identifying the

specific process associated with the particular damping model. In this way, an

explicit participation of the damping matrix is also made possible within the

moment matching dimension reduction framework.

(3) The particular application interest of this thesis is the NVH simulation for au-

tomotive and aerospace type vehicles. Therefore, numerical test cases involving

low density and high density fluid, in the form of air and water have been used

to demonstrate the accuracy and computational efficiency of the new meth-

ods for the solution of interior, fully coupled, structural-acoustic analysis. In

this manner, the properties of the ROMs for both weakly and strongly coupled

problems are investigated. It is shown that by applying the moment matching,

Arnoldi based Galerkin or Petrov-Galerkin type projections, it is possible to

obtain an accurate input-output representation of the coupled problem, irre-

spective of the fluid medium. Further, it is also demonstrated that it is possible

to generate structure preserving ROMs for the most commonly used damping

models. Some attention has also been given to the choice of expansion points

and convergence models for low frequency, structural-acoustic analysis.

(4) A new optimization framework for fast NVH simulation has been developed.

This new framework involves objective function computation by intermedi-

ate ROMs generated via the One-Sided Arnoldi process. For the optimization

method, the Mesh Adaptive Direct Search (MADS) is used in conjunction with
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Latin Hypercube Sampling (LHS) in order to escape local minimas. The de-

veloped optimization framework is applied to a fully coupled structural acous-

tic problem, to demonstrate the computational efficiency of the optimization

framework and the accuracy of the ROMs generated by moment matching.

1.4. Purpose of this thesis

The goal of this thesis is to introduce the reader to dimension reduction techniques

for fully coupled, interior structural-acoustic systems based on moment-matching

concepts via Krylov Subspaces. The key idea of constructing a reduced order model

via Krylov subspaces is to remove the uncontrollable, unobservable and weakly con-

trollable, observable parts without affecting the transfer function of the coupled

system under investigation. The thesis makes use of the Arnoldi process to preserve

the moment matching property in the reduced order model. Further, two extensions

of the Arnoldi algorithm namely, the multi-point and two-sided algorithm are dis-

cussed with an aim to further increase the accuracy of the reduced order model. The

numerical algorithms are applied to the Cragg’s unsymmetric displacement/pressure

formulation which is considered to be the most appropriate fully coupled structural-

acoustic formulation in the NVH community. Simple extensions of the projection

based formulation are made to accommodate various types of damping models (con-

stant and frequency dependent) via first order transformation and Second Order

Arnoldi (SOAR) process. Results are compared using direct results obtained via the

ANSYS FEM program, Closed form solutions (where available) and the principle of

vibro-acoustic reciprocity. For the test cases investigated in this thesis, it is shown

that the reduced order modelling technique results in a very significant reduction

in simulation time, while maintaining the desired accuracy of the state variables

(displacements and pressures) under investigation.
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The work also forms a small part of the EPSRC Low NVH Vehicle Structure

project (EPSRC - Faraday Advance 2003) which seeks to investigate the use of

light weight composite materials in production vehicle environment. In particular,

the roof panel of a Ford model is subject to investigation. To this end, moment-

matching based optimization framework is proposed and applied to a scale model

to gain fundamental understanding on the NVH behavior of such composite light-

weight designs. The optimization is carried out using a hybrid strategy involving

Latin Hypercube Sampling (LHS) and Mesh Adaptive Direct Search (MADS) al-

gorithm to counter the problem of local minima. In particular, the influence of

stacking sequences of a laminated composite structure on the interior sound pres-

sure level (SPL) are of particular interest. The optimization results indicate that by

tailoring the stacking sequence to shift the first natural frequency produces reduced

SPL levels in the fluid domain. Further, it is shown that by incorporating moment

matching approaches for vibro-acoustic optimization, the computational burden can

be significantly reduced whilst maintaining the accuracy of the objective function

for the optimization.

1.5. Thesis Outline

Chapter 2 reviews the literature focusing on current state of art techniques for

modeling interior acoustic noise. Both numerical and experimental work is included.

FEM and BEM techniques, their formulations, advantages, disadvantages are re-

viewed. This chapter also reviews some of the most commonly used model order

reduction techniques for structural-acoustics, methodologies for modeling passive

noise control treatments via novel materials and modeling strategies for fully cou-

pled structural acoustic optimization.
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Chapter 3 is dedicated to the study of the governing equations for fully coupled

structural acoustic systems. The FEM/FEM fully coupled structural-acoustic dis-

cretization, based on. Particularly, the Eulerian unsymmetric displacement/pressure

formulation is derived. The fully coupled and uncoupled modal formulations are also

briefly reviewed.

Chapter 4 introduces Krylov Subspace based projection techniques for fuly cou-

pled structural acoustics utilizing the Eulerian (u/p) formulation for the underlying

problem. The concepts of system representation, state-space modeling and the so

called leading co-efficients of the transfer function are introduced. Four algorithms

based on the classical Arnoldi process, to generate vectors belonging to the Krylov

Subspace and their connection to the leading co-efficients of the transfer function

are described. Dimension reduction techniques to deal with undamped, constantly

damped and frequency dependent, linearly varying damping are presented. Finally,

some convergence models and error parameters applicable to Krylov Subspace based

direct projection techniques are discussed from a stopping criterion viewpoint.

Chapter 5 describes the application of dimension reduction methodologies to six

different fully coupled structural-acoustic test cases. The test cases range from a 2-

D, water filled, benchmark structural-acoustic models to real-life, adhesively bonded

vehicle type structures. Structural excitation, in the form of point force, and acoustic

excitation, in the form of volume acceleration are considered to demonstrate com-

putational accuracy and efficiency of the proposed dimension reduction techniques.

Throughout this section, the examples are extended to constant structural/acoustic

and frequency dependent damping models.

Chapter 6 applies the concept of moment matching to perform goal oriented fully

coupled structural-acoustic optimization. In this chapter, a new optimization frame-

work is proposed, which exploits the structure preserving, moment matching con-
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cepts to enable efficient structural-acoustic optimization. A simple optimization test

case, a constrained plate-rectangular prism cavity structural-acoustic system is con-

sidered. The stacking sequence of the clamped plate structure enclosed by the rigid

walled acoustic cavity are considered as design variables for the optimization. The

optimization is carried out using the Mesh Adaptive Direct Search (MADS) algo-

rithm, incorporating a Latin Hypercube Sampling (LHS) technique at the start of

the optimization process. Results for four parameter and eight parameter stacking

sequences for two different composite materials are presented.

Chapter 7 draws some general conclusions on ROMs via Krylov Subspace based

projection techniques and suggests possible directions for future research.
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This chapter focuses on the techniques for the analysis of interior structure-acoustic

systems, consisting of a flexible structure in contact with an enclosed acoustic cav-

ity. A short literature review is presented here which focuses on the purpose of the

coupled analysis and the current NVH industry standard methods available to pre-

dict structural and acoustic behavior. The literature review addresses the following

topics: Analytical methods for prediction, Finite element and Boundary element

techniques, hybrid experimental-numerical approaches and vibro-acoustic optimiza-

tion. In the sections following, the governing equations of the structure-acoustic

problem are given and the finite element formulation of this problem are discussed.

2.1. Low Frequency Analysis: Structure Borne Noise

Structure borne noises (low frequency) are primarily caused due to the road (wheel

rotation), engines and power train excitations, which transmits to the vehicle body

(structural panels), to result in noise being radiated inside the interior cabin (Jha

and Priede 1972). In order to numerically predict the coupled behavior of a pas-

senger cabin-structure, the displacements of the structure and the acoustic pressure

fields inside the cabin are considered individually or simultaneously - depending

on the nature of the mutual coupling between the structural and acoustic systems.

This nature of this mutual coupling behavior is often categorized as weakly coupled
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or strongly coupled systems. When the influence of the fluid loading has a signifi-

cant effect on the vibration of the enclosing structure, the problem of analysis of the

coupled behavior of the resulting system is said to be strongly coupled. When this

influence is low, the system is described as a weakly coupled system. In weakly cou-

pled systems, the mutual vibro-acoustic coupling interaction between the structural

and the fluid components is very weak and therefore can be omitted in the analysis

of the dynamic behavior of such systems. This considerably simplifies the solutions

procedures for the prediction of the dynamic quantities under study. In strongly

coupled systems, the mutual vibro-acoustic coupling interaction is no longer negligi-

ble and all components must be treated as parts of a single coupled system, resulting

in a complex prediction procedures. Therefore, it is often desirable to know before

hand whether a system is weakly or strongly coupled. Atalla and Bernhard (1994)

put forward a dimensionless quantity (λc) to classify if a vibro-acoustic system is

weakly or strongly coupled:

λc =
ρ0 c

ρs t ω
(2.1)

where, ω is the circular frequency of a time-harmonic structural or acoustic exci-

tation of the system, t is a characteristic thickness of the structure, ρs is the mass

density of the structure, ρ0 and c are the mass density and sound speed of the fluid.

The authors state that a value of λc > 1 indicates strong coupling and a value of

λc < 1 indicates weak coupling. Equation:[2.1] indicates that a heavy fluid (e.g.

water) would indeed have a significant influence on the coupling measure. Unfortu-

nately, this measure is not fully comprehensive, since it does not take into account

the dimensions of the structural or fluid subsystems1. Due to this difficulty in gener-

ally classifying vibro-acoustic systems for their coupling behavior, industrial studies

relating to for example, for the interaction between the vibrations of the double

wall aircraft fuselage structure or the structural and fluid domains of an automotive

1For example, the dynamic behavior of an elastic structure enclosing a very small acoustic cavity
can be strongly coupled due to the fluid back pressure, even when the cavity is filled with a
low-density fluid such as air (Desmet 1998)
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structure are often modeled as fully coupled systems.

Weak coupling allows the in vacuo modal response of the structure and the re-

sponse of a rigidly enclosed space to be used to determine the coupled system re-

sponse. Lyon and Maidanik (1962), Pretlove (1966) both considered the theoretical

coupling of a single flexible rectangular panel backed by a rigid walled acoustic cav-

ity. The study was performed via a space average energy approach. It was assumed

that the fluid loading is small (weak coupling) relative to the panel stiffness and

that the fundamental in vacuo panel natural frequency is lower than the natural

frequency of the first cavity mode. The frequency range was classified into three dis-

tinct bands: low frequencies below the fundamental panel resonance where both the

panel and interior volume are stiffness controlled; intermediate frequencies, where

the panel is resonant and the cavity is stiffness controlled; and high frequencies in

which the both the panel and the interior volume display resonant behavior.

Fahy (1969) studied the vibration of a rectangular flexible panel backed by an air

filled rigid rectangular box using the modal coupling approach. A weak coupling

assumption was made for the analysis. The author further describes that the weak

coupling assumption does not necessarily hold for low-order acoustic modes and

small volumes or very light panels. Pope (1971) utilized the modal coupling theory

and experimentally verified the predictions for a closed cylinder and a rectangular

parallelepiped enclosure with a single flexible panel. The authors demonstrate that

the experimental results are in good agreement with modal coupling predictions.

Dowell et al. (1977) presented the theory of acoustoelasticity to analyze the coupled

behavior of a plate backed by an acoustic enclosure. Detailed analytical formulations

of the harmonic solution to the resonant transmission of sound through a structure

into a rigid walled acoustic space based upon a modal interaction model are pre-

sented. The predictions were successfully verified via experimental vibro-acoustic
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analysis.

If the geometry of the vibro-acoustic system and the boundary conditions are sim-

ple, then, in general, it is possible to derive analytical expressions for the terms in

the series solutions to the governing differential equations. However, for a majority

of real life vibro-acoustic systems, it is not possible to obtain analytical solutions

to the model equations because of the geometric or dynamic loading complexity of

the coupled system. Deterministic techniques based on FEM and BEM are often

utilized to counter this problem. Craggs (1969), Craggs (1971) studied a transient

coupled system using a displacement and pressure FE/FE formulation. In such

Vibro-acoustic FE models, the fluid is described in terms of acoustic pressure, and

the structure in terms of structural displacements. The formulation can also be

found in Zienkiewicz and Newton (1969). Due to the formulation of the coupled

problem by employing displacement and pressure as state variables, the resulting

set of coupled stiffness and mass matrices become unsymmetric. A description of

modal methods for acoustics using the pressure formulation can be found in Craggs

(1972). The idea of using these methods, is to find an exact solution for a set of

governing equations. To achieve this, the coupled domain is first discretized into a

number of elements. Within these elements, the dynamic response variables, in this

case the structural displacements or the acoustic pressures, are described in terms

of simple, polynomial shape functions.

In order to describe the spatial variation in the dynamic response with a certain

level of accuracy, often the rule of thumb is applied, which states that at least 6

to 10 linear finite elements should be used per wavelength (Atalla and Bernhard

1994; Desmet 1998; Desmet and Vandepitte 2005). For quadratic finite elements,

about 4 elements per wavelength are required (Pluymers 2006). These criterions

are mainly due to the upper bound limit for the relative prediction error of the FE
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method, which is given by (Ihlenburg and Babuska 1995; Ihlenburg and Babuska

1997; Bouillard and Ihlenburg 1999; Desmet and Vandepitte 2002):

εFEM ≤ C1

(
k h

p

)p

+ C2 k L

(
k h

p

)2p

(2.2)

where, k is the wavenumber, C1 and C2 are constants, where h is the finite ele-

ment size, p is the order of the polynomial shape functions and L is a characteristic

length of the problem domain.The first term in this prediction error is related to

the approximation error or the so called prediction error and the second term is

the pollution error. The prediction error2 results from the description of a dynamic

response field by the application of simple polynomials in the FEM. On the other

hand, the pollution error3 results from the difference in wave numbers for the FE

discretization and the exact problem. This phenomenon is referred to as numerical

dispersion.

In order to keep the errors at acceptable levels (by keeping k h constant), leads

to huge model sizes (as a consequence of smaller mesh size) for increasing frequency

and hence a significant increase of computational time and expense. In some sense,

the rule of thumb is used to control the approximation error well for low frequencies

or small wave numbers, where the approximation error is governed primarily by the

interpolation error of the employed FE scheme. Note that another possible approach

to limit the prediction error is to employ higher-order finite elements (Harari and

Avraham 1997). A notable disadvantage of this method, however, is the increase in

the matrix bandwidth, which results in increased computational effort. Therefore,

it can be concluded that if a higher degree of accuracy is required, quadratic ele-

ments should be employed at an increased computational cost. On the other hand,

2This is dominant at low frequencies.
3This is dominant at higher frequency. For specific discretization criterions used to control this

type of error, the reader is referred to Ihlenburg and Babuska (1995), Ihlenburg and Babuska
(1997), Bouillard and Ihlenburg (1999).
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if a lower degree of accuracy is sufficient, linear elements could be employed. As a

general trend, it is common practice to use linear elements and is employed by most

commercial FE packages for fully coupled structural-acoustic analysis.

On the other hand, the BEM is also a well established alternative method for the

FEM for various engineering problems (Brebbia et al. 1984). In this approach, the

application of boundary integral formulations forms the basis of the BEM. These

boundary integral formulations relate the field variables inside the problem domain

to boundary variables at the boundary surface. In general, the BEM approach con-

sists of a two-step procedure: In the first step, the distributions of the boundary

variables are determined. In the second step, the field variables in any point in

inside the acoustic domain are obtained from the boundary integral formulation,

using the boundary surface results of the first step. The two most popular BEM

approaches are the direct (Schenck 1968) and indirect BEM. When compared to the

finite element method, since only the boundary surface of the acoustic domain is dis-

cretized into elements, the size of direct and indirect boundary element models are

substantially smaller. From an industrial viewpoint, significant saving in man hours

is achieved, since only the boundary of the acoustic domain is discretized. However,

due to the fact that the Green’s kernel function used in the BEM is a complex func-

tion, the matrix coefficients in boundary element models are complex. Additionally,

the resulting matrix coefficients are also frequency dependent. This means that, a

BEM model does not lead to a natural eigenvalue problem as encountered in an

FEM model. To counter this drawback, a decomposition method is proposed (Ali

et al. 1995; Coyette and Fyfe 1990), which leads to an algebraic non-symmetric

eigenvalue problem for the computation of natural frequencies and mode shapes of

an interior acoustic system. Therefore, when the BEM is utilized for fully coupled

analysis, the computational effort becomes much larger when compared to solving

the sparsely populated, frequency independent FEM based methods (Desmet 1998).

25



2. Literature Review

To alleviate the computational difficulties encountered with the Eulerian u/p for-

mulation, alternative FE/FE formulations leading to positive-definite, symmetric

matrices have been proposed. In such studies, the structural field, the primary vari-

able considered is displacement. For the fluid field, the unknown variables have taken

the form of velocity potential (Everstine 1981; Olson and Bathe 1985), a combination

of velocity potential and sound pressure level (Morand and Ohayon 1979), displace-

ments in the fluid (Feng and Kiefling 1976) and a combination of displacements and

pressures (Wang and Bathe 1997). For an application of the mode superposition

method utilizing the velocity potential and pressure formulation for the acoustic

field and displacement formulation for the structure, the reader is referred to Wang

(1998). However, these formulations encounter new problems such as spurious rota-

tional modes (for a treatment of this problem via the vorticity moment formulation,

the reader is referred to Bathe et al. (1995)), increase in dimension of the problem

size, rendering the coupled system gyroscopic or involves solving a complex matrix

even for an undamped coupled structural-acoustic problem (thus requiring com-

plex eigen value routines to determine real eigen values). Such problems with these

other formulations have resulted in the Eulerian (u/p) formulation (Craggs 1969;

Zienkiewicz and Newton 1969; Craggs 1971; Craggs 1973) being adopted as the most

appropriate prediction technique (Desmet and Vandepitte 2005), and being widely

employed in commercially available FE codes such as ANSYS, MSC/Nastran, DSS

ABAQUS, LMS SYSNOISE.

Irrespective of the structural-acoustic formulation employed, it is clear the di-

mension reduction reductions are required to reduce the system matrices such that

computationally efficient analysis and sensitivity analysis is feasible. The two most

popular approaches to reduce the computational time of such coupled fluid-structure

formulations are the coupled mode superposition and the uncoupled modal synthesis
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methods (Desmet 1998). Both these methods, perform a change of base (through

a set of eigenvectors), resulting in a lower dimensional model. The former method

uses the dominant natural frequencies and mode shapes, extracted from a coupled

modal analysis (i.e. the coupled eigenvalue problem) and the response is assumed to

be a linear combination of these modes. However, the standard mode superposition

method, suffers from four major drawbacks: (a) The computation of coupled modes

using a non-symmetric eigen-solver tends to be computationally very demanding

(Pirk et al. 2002); (b) The second drawback is the treatment of damping. For well

damped structures, a spatially distributed damping - often varying with frequency,

has to be utilized (Marburg 2002a); (c) If a structural-acoustic optimization problem

in a particular frequency band is considered, there exists the problem of only the

higher order modes being truncated, leading to unwanted estimation of lower order

modes repeatedly (Pal and Hagiwara 1993); and (d) The number of modes required

to represent the frequency band under investigation is often an approximate guess

of between 1.5ωE to 2ωE where ωE is the upper frequency range.

In the uncoupled modal synthesis type approach, the system is divided into dis-

tinct natural components4 (structure and fluid), and the uncoupled modes from a

symmetric eigenvalue problem are calculated. This set can then be treated as vectors

for projection in the standard modal superposition model. However, the efficiency

of the uncoupled modal formulation for coupled structural-acoustic problems in re-

ducing model size is poor, since a large number of acoustic modes are required to

enforce displacement continuity along the fluid-structure interface. This is mainly

due to the fact that the modes of the uncoupled acoustic model have a zero normal

fluid displacement along the fluid-structure coupling interface. Therefore, for an

accurate representation of the near-field effects in the vicinity of the fluid-structure

4In some sense, this approach can also be referred to as a global component modes approach, since
the coupled problem is now partitioned into different uncoupled natural components - namely
the structure and the fluid.
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coupling interface a large number of high-order modes in the acoustic modal basis

is required, resulting in slow convergence of the coupled problem. This has been

numerically demonstrated for a 1-D tube example (Desmet 1998). Further, the ef-

fect of the kept (retained) dry modes is critical to the convergence in the uncoupled

modal basis method, especially for strongly coupled problems (Ohayon and Soize

1998; Boily and Charron 1999; Tournour and Atalla 2000; Ohayon 2004) e.g. pres-

ence of heavy fluid. Davidson (2004), proposed a selection criterion which identifies

the coupling influence of the uncoupled modes based on the coupled stiffness ma-

trix (starting from the u/p formulation) and the resulting natural frequencies and

mode shapes from an uncoupled modal approach. This coupling expression allows a

quantification of the coupling between the structural domain and the fluid domain

to be determined creating the possibility of choosing the most important uncoupled

modes to include in the reduced coupled problem. In this way, the important modes

of the subsystems are retained for the modal type projection. The approach has

been successfully utilized for regular air filled cavities and cavities including porous

media.

The restriction of these two primary modal type reduction methods has left NVH

engineers with a very limited number of tools for the numerical analysis of vehi-

cle/aerospace interior noise prediction problems, and hence they are often forced

to resort to mixed experimental-numerical approaches (Kim et al. 1999). Other

approaches to reduce computational time for structural-acoustic problems include

the use of symmetrization techniques (Morand and Ohayon 1995; Ohayon and Soize

1998; Ohayon 2004; ABAQUS 2005), geometric mesh skinning and the use of non-

matching fluid and structural meshes (Coyette and Dubois-Perlerin 1994), com-

putation of eigenvectors of the original system by using eigenvectors of a reduced

eigenvalue problem and local substructure modes via the Automated Multi-level

Substructuring method (Bennighof 1999; ABAQUS 2005), the recently developed,
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modified AMLS method for non-symmetric eigenvalue problems (Stammberger and

Voss 2007), the component modes approach (Magahlaes and Ferguson 2003; Maga-

hlaes and Ferguson 2005), generation of Ritz vectors (Seybert et al. 1993; Morand

and Ohayon 1995), use of acoustic influence co-efficients from BE models (Marburg

et al. 1997), truncated FE/FE analysis (Pal and Hagiwara 1993), the patented

Acoustic Transfer Vector (ATV) method (Sysnoise 2004), the wave based prediction

technique (Desmet 1998) and the use of banded Lanczos process for symmetric ma-

trices arising from exterior acoustic problems (Malhotra and Pinsky 2000; Wagner

et al. 2003), to name a few. For interior structural-acoustic problems, the AMLS

method offers significant speed up in simulation time, without user intervention for

partitioning the components (Kroop and Heiserer 2003; Stryczek et al. 2004; Gao

et al. 2005). In this method, an automatic partitioning of the FE model into sub-

structures is performed on a number of levels, based on the sparsity structure of

the system matrices for eigenvalue and eigenvector computations. In practice, the

substructure partitioning is normally achieved utilizing efficient graph partitioner

such as METIS (METIS 2005). The response is then represented in terms of the

substructure eigenvectors. The reader is referred to the reviews by Atalla and Bern-

hard (1994), Ohayon and Soize (1998), Marburg (2002a), Desmet and Vandepitte

(2002), Thompson (2006), ABAQUS (2005) for a description of some of the above

mentioned modal and model type dimension reduction approaches.

It is worth reminding the reader that the reduction techniques based on uncou-

pled modal synthesis do suffer from accuracy problems in terms of the number of

kept modes for strongly coupled problems and computational efficiency for weakly

coupled systems. In some sense, the AMLS method alleviates this problem for cou-

pled structural acoustic analysis by employing an efficient procedure to compute a

large number of eigenvectors5. For a general review on CMS type approaches for

5This is later demonstrated in Chapter:5.1 of this thesis.
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structural dynamic analysis, the reader is referred to Craig (2000). In what follows,

a short review of the interior structural-acoustic modeling methodology, with a focus

on its application to automotive and aerospace type cabin interiors is presented.

2.1.1. Low Frequency NVH: Prediction Methodologies

Petyt et al. (1976) were probably the first to utilize finite element technique for

acoustic analysis. In this work, the authors developed a 20 node acoustic finite ele-

ment to compute the natural frequencies and mode shapes for applications involving

irregular enclosures. Experimental modal analysis were carried out on a one twelfth,

scale model van type enclosure, using 10mm perplex sheets to introduce rigid walled

boundary conditions. The authors report excellent agreement between numerical

and experimental natural frequencies. Nefske et al. (1982) described the develop-

ment of coupled structural-acoustic analysis, including structural forcing vectors,

utilizing the coupled FEM for the study of vehicle interior noise. A comprehensive

review of the formulation of FEM in both physical (direct) and modal co-ordinates

to investigate the structural-acoustic behavior of passenger car cavity is presented.

Resonant frequencies and noise transfer functions calculations for a vehicle body are

presented. The effect of the contributions of each panel to the total sound pressure

level (SPL) has also been investigated. This analysis was performed by re-running

the analysis, each time with a single panel. In a similar study, Nefske and Sung

(1985), Sung and Nefske (1986) demonstrated the use of the FEM to compute nat-

ural frequencies, mode shapes and interior SPL of a van type structure. Due to the

computer limitations at that time, for the coupled analysis (in the frequency range

of 0-100Hz), the authors diagonalized the resulting fluid-structure matrices to save

computational time. In general, the noise transfer function values were within ±5dB

agreement (in comparison with experiment) at peaks but significant deviations were

observed at troughs. The authors point out that this discrepancy could be a result
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of inaccurate modeling of damping or the fact that too few modes were included in

the uncoupled modal basis technique (Lalor and Priebsch 2007).

Campbell (1993) suggested the form of body acoustic sensitivities to study the

vibro-acoustic behavior. Finite Element models of the car body and the cavity were

generated using commercial software SDRC-IDEAS. The uncoupled modal (u/p) ap-

proach has been utilized. A unit force was applied to the front control attachment

arm, and the acoustic response computed. An empirical model to include seats, by

increasing the mass density of the fluid elements by a factor of 10 in the acoustic FE

model is also suggested. Side doors were modeled as lumped masses to simplify the

coupled analysis. The author reported that the trends predicted by the model were

generally found in good agreement with experimental test data. Design modifica-

tions were then introduced in the form of beam and panel section modifications to

reduce interior noise. Sung and Nefske (1999) utilized the coupled FE/FE formula-

tion, within the framework of MSC/NASTRAN finite element code. The uncoupled

modal superposition method was used to compute the coupled response. Computed

response quantities were compared with experimental results of a trimmed passen-

ger car in the 0-200Hz frequency range. Techniques to deal with symmetric and

unsymmetrical structures have also been highlighted. Modal damping was assumed.

The structural and acoustic damping used in the coupled analysis were 3% and 6%

respectively. The structural response functions showed a mixture of under-predicted

peaks and major differences in the 40-70Hz and 125-175Hz frequency range. One

of the reasons put forward by the authors of the paper for under-predicted peaks

was identified as inaccuracies in representing damping. The measured interior noise

levels above 150Hz. had significant discrepancies, which could not be resolved. The

authors of the paper suggest that these discrepancies could be resolved by improving

modeling of joints and structural, acoustic damping factors.
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To study the geometric effects of acoustic cavities, an uncoupled analysis is pre-

ferred. Compared to a fully coupled analysis, an uncoupled analysis based on the

FE/FE methods leads to symmetric and sparse matrices. At this point, it is worth

mentioning that the natural frequencies and modes of a coupled system are different

from those of the individual uncoupled systems (Dowell et al. 1977; Fahy 2000).

Kopuz and Lalor (1995) carried out a series of numerical investigations (FEM and

BEM) on simple box shaped structures and then extended the idea to study the ef-

fects of a car boot (luggage compartment) on the interior acoustics of the passenger

car cabin (box shaped structure). The work utilized the SYSNOISE finite element

and boundary element codes. The use of the direct approach, which requires an

inversion of the stiffness matrix and the modal superposition approach, in which the

problem is formulated and solved in the modal co-ordinates have been compared. It

was found that both yield similar results and no significant difference were observed.

The direct and indirect BEM approaches have also been compared with each other

in terms of solution state accuracy.

Kim and Lee (1995), put forward a hybrid Finite element- Experimental Struc-

tural Modal Analysis (ESMA) based method for noise reduction in a vehicle passen-

ger compartment. In this study, the coupled response of the cavity is described in

terms of structural and acoustic modal co-efficients and modal parameters of the ve-

hicle. The variables of pressure and displacement were described using the rigid wall

cavity modes and the structural modes. Using these results, an expression for the

coupling coefficients has been formulated. These co-efficients were used to analyze

the coupling behavior between the structural and acoustic modes. The structural

modes were obtained using ESMA. The developed method has been validated on

a fabricated half scale passenger car model. Structural modifications, in the form

of damped structures were introduced to reduce overall SPL inside the cabin. The

work was extended in Kim et al. (1999) by applying the method to a real life pas-
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senger vehicle. The acoustic modes were computed using the ANSYS finite element

code. The structural modes (obtained by ESMA) were used as boundary conditions

for the coupled model. The authors conclude that the method is particularly suited

to trouble-shoot noise problems on production vehicles.

Lee et al. (2000) proposed a similar hybrid approach, but using the FEM for

the structure and the BEM for the fluid to analyze the booming noise encountered

in the low frequency range. In addition to this, experimental data acquired from

ESMA, Transfer path analysis (TPA), and Running Mode Analysis (RMA) were

introduced into the computational model. Running mode data, in the form of accel-

erations, were introduced into the acoustic model to study the response. Measured

impedance, from impedance tube tests, were imported into the FE model. Similar

response patterns were observed from FE models and experiments. Panel Contri-

bution Analysis (PCA), which used the running mode data to generate velocity

boundary conditions in the BE model, showed that the contributions from vehicle

roof and rear windshield were dominant. These were then reduced by reinforcing

the cross member of the roof rail.

For fully trimmed structures, structural or acoustic damping (energy dissipation)

mechanisms are commonly modeled using constant/frequency dependent damping

or by specifying an impedance value at the boundary of the acoustic domain6. Mor-

rey and Whear (1996) studied the NVH behavior of an interior car cavity, where,

the frequency response functions of the vehicle structure (utilizing element based

techniques) were applied as a forcing function to the acoustic boundary and a PCA

analysis performed using the BEM. In this study, experimentally obtained bound-

ary impedance values were also included in the deterministic model to represent the

presence of carpet and seats. The experimentally obtained noise transfer functions

6Such computations are predominantly carried out assuming harmonic excitation - resulting in
damping formulations in the frequency domain.
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were in good agreement with predicted values. Wentzel and Green (1997) specif-

ically addressed the importance of choice of roof assembly and head liners on the

development of quieter vehicles. A review of techniques for obtaining material prop-

erties of an acoustical product (like sound transmission loss, absorption co-efficient)

is included. It has been reported that, higher the head liner thickness, the better

were the acoustical properties. Typically, such acoustical properties (impedance,

absorbtion coefficients) can be extracted using an impedance tube (see e.g. (Peng

et al. 1996). Kang et al. (2000) studied the interaction between roof, air-gap, trim

and floor. To simplify the coupled analysis procedures, the authors proposed a one

dimensional impedance model. The theoretical model was then compared with the

FEM using the MSC/NASTRAN code. The developed method was applied on a

fabricated passenger car compartment to study the effects of variables such as trim

mass, air gap thickness and the roof and floor. As one would expect, a higher trim

mass has shown to reduce the amplitude of the response. Similarly, higher air gap

thickness has also shown to reduce the amplitude of the resonance peaks, but tends

to induce another resonance peak with a significantly low magnitude. It has been

identified that the air gap thickness and the trim mass can be effectively utilized to

reduce the resonance peaks of the up/down acoustic mode (parallel to roof). Proper

choices of adhesive systems have also been proven to have a significant effect in the

NVH behavior of vehicle structures (Krois et al. 2003).

The majority of the current materials used in the automotive industry are made

up of thin sheets of metals, which in general have very low internal damping (energy

dissipation) mechanisms. Due to this, high resonant vibration levels are observed

when such structures are excited. To tackle this problem, engineers often resort

to active or passive noise control. Active noise control (ANC) involves the use of

electronic devices such as speakers, microprocessors or actuators (Lane and Griffin

2001; Oliveira et al. 2006) to produce an out of phase signal to cancel the distur-
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bance. The use of electronic devices to achieve reduced NVH causes an inevitable

increase in cost, which manufacturers often strive to minimize. On the other hand,

passive noise control involves the use of high damping materials, which tend to re-

duce the amplitudes of vibrations, thus reducing noise levels, while maintaining or

reducing the component weight. In general, the passive control techniques works

well in middle to high frequencies while the active control methodology provides

noise cancelation at low frequencies (Mathur et al. 2001). By combining active and

passive concepts, hybrid noise control methodologies are obtained, which allows the

control of noise over a wide frequency bandwidth. Such hybrid noise control tech-

niques are often deployed in aerospace and space craft type vehicle structures.

Niyogi et al. (2000) utilized a coupled FE/BE formulation to study the coupled

effects of folded laminated composite structure backed by an acoustic cavity. The

authors note that no results were available (at that time) in the open literature that

addresses the problem of interaction between a composite structure and an interior

acoustic domain. First order Shear Deformation Theory (FSDT) has been used for

the structural analysis. An impedance relationship has been used to derive the nor-

mal forces which act on the fluid- structure interaction zone. Using this method,

the effect of stacking sequence, wall thickness and damping ratio’s on the variation

in pressure level inside a rectangular enclosure were studied in detail. This is shown

in Figures:[2.1,2.2]. It can be observed that for the same stacking sequence, wall

thickness is a significant variable which dictates the SPL pattern.

The pattern of the variation in pressure level has been attributed to the fundamen-

tal natural frequencies of the composite folded plate. Similar structural frequencies

have generated similar pressure level response pattern. As one would expect, a higher

damping ratio of the composite structure, resulted in a decrease in the magnitude

of the pressure response. These results clearly indicate that the material properties
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Figure 2.1.: Pressure variation with stack-
ing sequence (Niyogi et al.
2000).

Figure 2.2.: Pressure variation with stack-
ing sequence and wall thick-
ness (Niyogi et al. 2000).

of the structure play an important role in the structural-acoustic NVH behavior. In

automotive applications, passive damping in the form different material models such

as sandwich structures are often used to reduce noise and vibration, with an aim to

improve the interior sound quality. The study also confirms the use of determinis-

tic techniques to study the effect of composite materials on low frequency, interior,

structural-acoustic behavior.

An uncoupled acoustic computation often forms the start point for fully coupled

structural-acoustic analysis. Whear and Morrey (1996) put forward an experimen-

tal side-by-side microphone probe technique for acoustic modal analysis using a

commercial structural modal analysis software and an analogue differential ampli-

fier. The developed technique was verified by measuring the natural frequencies

and mode shapes of a bare rectangular office along with analytical calculations and

uncoupled acoustic finite element results. The authors demonstrated that there was

very good agreement for all modes in the considered frequency range (0-100Hz).

The authors have utilized the developed acoustic modal analysis technique in Mor-

rey and Whear (1995), Morrey and Whear (1996), to study the structural-acoustic

behavior of a Rover Metro R-6 Body-in-White (BIW). A finite difference principle

was used in conjunction with three microphone probes technique to obtain the sec-

ond derivative of partial pressures. The pressure measurements were taken using the
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microphones, while a developed electronic circuit was used to carry out the finite dif-

ference calculations. Experimentally obtained natural frequencies and mode shapes

were compared with numerical (element based) predictions. The authors note that

estimates of natural frequencies compared well with numerical results, but the mode

shapes did not match well. This can be attributed to the fact that, while testing

on a real-life vehicle, the so-called rigid wall condition were not satisfied. Indeed,

the authors find a (1
2
,0,0) acoustic mode. This is likely due to the presence of a

coupled fluid/structure mode(s) i.e. coincident fluid and structural natural frequen-

cies. Further, the authors also demonstrate that the boundary impedance has little

effect of the natural frequency, but significantly affects the mode shapes, due to the

displacements of the structure.

Cornish (2000) proposed an experimental based approach to study the interior

noise of a commercial vehicle in the low frequency range. The technique is based

on the well-known principle of Structural-Acoustic Reciprocity (Fahy 2000; Fahy

2003). The approach was applied on a commercial production vehicle. A monopole

sound source was used near the driver’s head, which generated a random noise.

Accelerometers were then mounted on the front right engine mount, to obtain the

acceleration data. Noise paths were quantified using this method. When computa-

tional modeling is a constraint, or where manufacturing variability is a significant

issue, this method seems to be particularly attractive to quantify noise paths and

apply appropriate structural/body modifications to reduce overall SPL. Maruyama

et al. (1999) analyzed the interior acoustic behavior of a passenger car by making use

of the structural-acoustic reciprocity technique. The author explains why the con-

cept of reciprocity should be applied to the study of low-frequency structure-borne

sound and also discusses some of the common causes of structure borne noise as-

sociated with passenger cars. Desmet (1998) extensively utilized the vibro-acoustic

reciprocity relationship for the computational validation of the wave based prediction
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technique. In this way, two computational dynamical transfer functions, resulting

from unit structural and acoustic excitations were compared for accuracy. This

study also indicates that the reciprocity relationship could be used to validate new

computational techniques for fully coupled structural- acoustic systems.

Priebsch et al. (2001) proposed methodologies to study the structural-acoustic

behavior in a sequential manner. In this study a coupled FE/FE formulation has

been employed using commercially available finite element codes NASTRAN and

LMS SYSNOISE. The car body is tested in four steps: (a) Stripped BIW (b) BIW

with windshield and bulkhead fitted (c) Closed BIW (All doors added) (d) Fully

trimmed vehicle. Using this four-step methodology, the effects of seats, varnishing,

paint, internal damping of structures have been studied. Precise modeling of gaps

and joints, which has shown to significantly affect the interior noise have also been

studied using this method. Figure:[2.3] show the effect of accurate modeling of gaps

and uncovered openings on interior SPL.

Figure 2.3.: Effects of gaps and openings on interior SPL (Priebsch et al. 2001).

Pirk et al. (2002) described the vibro-acoustic analysis of a launch vehicle fairing.

The analysis has been carried out using a coupled FE/FE formulation in the low fre-
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quency range, and Statistical energy Analysis (SEA) in the higher frequency range.

In some sense, the authors have performed a broad band vibro-acoustic analysis on

the launch vehicle fairing. Special considerations were given to modeling the fairing

structure, which is a detailed model. The fairing structure is meshed using 4 noded

shell elements, while the acoustic domain is meshed using 8 noded brick elements.

An uniform exterior pressure (simulating lift off) loading is specified by applying

a normal point force on all nodes of the external fairing shell elements. The force

value is defined such that the total load is equivalent to a uniform pressure load-

ing of 160dB. In this instance, the structural mesh is very much different from the

acoustic mesh. To tackle this problem, a geometric interpolation algorithm has been

used to project the structural modes on a coarser mesh, representing the structure.

The uncoupled FE/FE method was compared with the FE/BE method in the low

frequency range. It was shown that the results were accurate till 150Hz. The com-

putational efficiency of the uncoupled FE/FE method, compared to the uncoupled

FE/BE method has also been demonstrated.

Buehrle et al. (2001) utilized the FEM/BEM method to predict sound transmis-

sion loss of CFRP honeycomb panels. The structural response of the curved panels

due to point force excitation was predicted using MSC/NASTRAN and the radi-

ated sound was computed with COMET/Acoustics. The predicted velocities from

the FEM, was projected on the BEM mesh for acoustic analysis. The core of the

honeycomb panel has been modeled by 8 noded solid elements, while the face sheets

were modeled using 4 noded shell elements. To test the solid modeling methodology,

modal analysis tests of the honecomb panel were carried out under free-free condi-

tions. These modal parameters were then verified by FE simulations. Experimental

verification of the acoustical numerical analysis approach to predict radiated sound

power have also been provided. In a similar study, Buehrle et al. (2003) used the

FEM/BEM technique to predict sound transmission loss of damped plexiglass win-
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dows. The construction of the material was similar to that of a constrained layer

damping (CLD) treatment. A viscoelastic material was used for the core, in two and

three layer configurations as shown in Figure:[2.4]. The mode superposition, with

frequency dependent properties constant at 100Hz. was used for the structural FEM

study. The core was modeled by 8 noded solid elements, while the face sheets were

modeled using 4 noded shell elements with node offset. The computed velocities

were then projected on the BEM mesh to compute the acoustic response. These

results show that it is most advantageous to place all of the damping material at

the mid-plane where the shear strains are the largest. In terms of FEM modeling

of the CLD treatment, it was observed that using a solid-solid-solid layered model

yielded better response predictions when compared to the solid-shell offset method.
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Figure 2.4.: Two layer (left) and three layer damped plexiglass windows for aircraft
interior noise control (Buehrle et al. 2003).

2.2. Structural Acoustic Optimization

In order to improve the acoustic characteristics of a vehicle interior, numerical opti-

mization is often employed. Such a multi disciplinary optimization approach requires

the coupled fluid and structural equations (assuming only a few design variables),

causing an inevitable increase of computational time and expense. Since there ex-

ists two forms of solution (coupled and uncoupled), it is often left to the engineer

to decide which one of them would best suit the problem under investigation. From

a design point of view, it would be worth while to note that an uncoupled analysis

would often be well suited. This is because, the acoustic modes of the cavity arise

from the geometric dimensions of the cavities themselves, and the coupling effect can
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be observed only when the structural and the acoustic frequencies are closer to each

other. Such a one-way interaction model (uncoupled) assumes that the structural

changes are very small when compared to the fluid wavelength. This is a reasonable

assumption, from a materials stand point, since we do not seek to alter the geometric

shape of the panel/structure under investigation, but to study the effects of material

properties and material orientation on the acoustic behavior of such panels.

Marburg (2002a) has provided a detailed review of the current practices in

structural-acoustic optimization with focus towards passive noise control for au-

tomotive type structures. The author has focused on the following aspects: Op-

timization methodologies, objective function formulations, design variable choices,

speed-up techniques for NVH simulation, results from objective functions and de-

sign modifications and numerical algorithms. From currently existing literatures, it

can be concluded that there are three different optimization approaches for interior

acoustic NVH optimization. They are: (1) Structure only (2) Uncoupled Fluid-

Structure and (3) Fully Coupled Fluid-Structure. One of the main aims of all the

above optimization formulations is to avoid re-computing the fluid domain for ev-

ery iteration (except 3). In what follows, a brief description of these optimization

methodologies and their subsequent applications for interior acoustic NVH modifi-

cations are reviewed. For a complete review of low frequency, structural-acoustic

optimization, the reader is referred to Marburg (2002a).

Lamancusa and Eschenauer (1994) used a combination of the finite element

method and the CONMIN optimizer code to optimize the radiated sound power

of simple plates. In the first step, the structural normal velocities are calculated

from displacements from a finite element harmonic analysis. To compute a related

acoustic quantity (usually the radiation efficiency), the Rayleigh Integral (Fahy 1985;

Fahy 2000) is employed. According to the Rayleigh Integral, the sound pressure at
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any point r is evaluated by:

p(r) =
jωρ

2π

∫
s

v̆(rs)e
−jkR

R
dS (2.3)

where, p(r) is the complex sound pressure at r, r is the position vector of the ob-

servation point, rs is the position vector of the elemental surface δS, R =| r − rs |,

v̆ is the normal velocity of the elemental surface area δS, k is the acoustic wave

number, ρ is the mean density of the fluid and j =
√
−1. In the second step the

integral (Equation:2.3) is numerically evaluated by discretizing the structure into a

set number of finite elements. Accordingly, the sound pressure at the centroid of

each element is computed by summing the contributions of each element and then

by integrating the acoustic intensity over the surface of the structure to calculate the

radiated sound power. Once the radiation efficiency of the structure is determined

(from the radiated sound power), it is then used as an objective function for the

optimization problem. The authors carried out optimizations using the CONMIN

optimization code which in turn employed the method of feasible directions. Results

report around 6.7dB improvement in radiated power in certain cases. It was further

concluded that using sound power as the objective function produced consistent

results. It is worth pointing out that for simple plates with isotropic material prop-

erties, the radiation efficiency can be calculated from closed form solutions (Wallace

1972).

Naghshineh et al. (2002) reported significant reductions in sound power level

by tailoring the material properties of a beam in a rigid baffle. A distribution of

Young’s modulus and density is found for the structure such that it exhibits the

weak radiator velocity profile as one of its mode shapes. The weak radiator profile

is found using the surface velocity distribution that produces a minimum radiation

condition. Belegundu et al. (1994) presented a general approach to optimize struc-
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tures for sound power minimization. Rayleigh Integral is used in conjunction with

design sensitivity analysis and optimization is carried out using the method of fea-

sible directions. The methodology is first validated on a flat plate and then applied

on an engine cover. Results report reduction of sound power by around 30dB in

certain frequency ranges.

Pierre and Koopmann (1995) used a similar method to modify the mode shapes of

the structure, forcing the structure under investigation to radiate sound inefficiently

(weak radiator modes). Common to such studies, the discretized form of Raleigh

integral was used to calculate the radiated sound power. Analytical sensitivities of

sound power with respect to the design variables were used for optimization. Small

masses on the structure were used as design variables. Results report around 30dB

improvement in sound power (reduced sound power) in certain cases. Experimen-

tal investigation using sound intensity measurements compares well with predicted

optimization results, but the authors report differences of up to 7dB in some cases.

The authors of the paper report that this could be due to the assumption of perfect

clamped boundary conditions in the finite element model.

Wodtke and Lamancusa (1998) applied the Rayleigh Integral to compute sound

power and optimize a circular, unconstrained damping layer plate. Frequency de-

pendent loss factors and modulus values were employed in the structural harmonic

response analysis7. Note that for sound power computation via the Rayleigh In-

tegral, only a structural harmonic simulation is required, which results in banded,

symmetric matrices. The thickness of the damping layer was used as the design

variable. Different damping materials were used to study the effects of frequency

dependent modulus on the radiated sound power. Reduced sound power levels have

been reported by using softer damping material. The authors further demonstrate

7The direct inversion method is required to take into account frequency dependent loss factor
values for multiple materials in a structural harmonic response analysis.
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that starting from a uniform damping layer distribution, substantial reduction in

radiated sound power can be achieved through the redistribution of the damping

layers. Patil and Crocker (2000) conducted further studies using the Rayleigh inte-

gral formulation to predict radiation efficiencies and radiated sound power os simple

plates. Shell thicknesses of individual elements of a rectangular 1mm flat plate were

used as design variables. In certain cases, the mass of the plate was used as a state

variable to search for the best design while maintaining the original mass. The AN-

SYS FE code was employed to carry out the mode superposition harmonic analysis

under diffuse field excitation and optimization using the sub-problem optimization

algorithm. A constant damping ratio of 1% has been used. Results report decrease

in frequency averages sound power of 0.0013 Watt. The paper concludes by suggest-

ing this method for designing vibrating body panels in automobiles and aircrafts.

Orzechowski and Landmann (1994) utilized the combined finite element /

Rayleigh integral approach to predict far field radiated mean square pressure in

the 350-1000Hz frequency range. The structure under investigation was a section

of an aircraft fuselage which comprised of damping tiles (made of viscoelastic mate-

rial) in between stringers. The modal strain energy approach was used to calculate

damping of the constrained layer structure and further used these damping values

in a mode superposition harmonic analysis. The modulus of the damping material

was varied, and the effect of such variation on the acoustic behavior (here sound

pressure level) is studied. The authors conclude that the sound reduction increases

when the modulus of the viscoelastic material is high. The results were reported

in terms of space averaged mean square velocity and sound pressure level obtained

from Rayleigh formulation. The calculation and use of sound pressure level using

the Rayleigh Integral is not appropriate and it has been shown that the Rayleigh

formulation can lead to inaccurate results for sound pressure level estimation, but

accurate enough for sound power computation (Seybert and Herrin 1999; Herrin
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et al. 2003). This is the reason most authors employ the Rayleigh Integral to com-

pute sound power from sound pressure. Comparing this method to the FE/FE or

FE/BE coupled analysis, the Rayleigh Integral formulation is much efficient in terms

of computational time and expense, but this method has not been used specifically

for interior acoustics. In fact, Marburg (2002a), in his review paper, seems to clas-

sifies the Rayleigh Integral formulation for exterior acoustics and no application of

this technique is yet found for interior acoustics.

This second type of vibro-acoustic optimization approach is considered as the

purely acoustic approach. Often, the structural normal velocity is assumed to excite

the fluid boundary. The fluid back pressure is neglected in this type of analysis and

subsequent optimization. Engelstad et al. (1995) designed a computational tool

combining FE and BE, for the structure and the fluid respectively. The structural

harmonic velocities were obtained using the FE code MSC/NASTRAN. These ve-

locities were then used as boundary conditions on the COMET acoustic BE model

to predict SPL at desired locations. Sensitivities to changes in velocity boundary

conditions were then obtained using the COMET BE program. The computed sen-

sitivities were then combined with FE generated structural sensitivities, to produce

complete, global structural- acoustic sensitivities. This information on sensitivities

were then combined with feasible directions algorithm to search for the best design.

Crane et al. (1997) extended this concept, by analyzing a vibrating cylinder under

tonal excitation (monopole model). Cylinder thicknesses were used as design vari-

ables subject to maximum weight constraints. In this work, four different acoustic

objective functions (sum of acoustic pressure squared at points inside the cylinder,

weight and summed pressures, sum of acoustic pressures with constraint on weight,

weight of the structure with constraint on sum of acoustic pressures) have been stud-

ied. It was reported that other than setting weight of the cylinder as the objective
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function and sum of acoustic pressure as a constraint, all the other three formula-

tions yielded similar results.

Marburg et al. (1997) developed numerical models to optimize a vehicle roof

based on acoustic influence coefficients. The acoustic influence coefficients have

been obtained from the fluid BE formulation. Results from a harmonic analysis of a

structure using the modal superposition technique were used as velocity boundary

conditions in the acoustic BE model. These methods have also been extended to

study properties of other specific subsystems like the roof and floor of a passenger

car. The influence coefficients, computed from a boundary element analysis of the

cavity acts as a transfer relation between the normal structural velocity and the

sound pressure level at a particular node/field point. Since the influence coefficients

obtained are nothing but the solution to the fluid’s boundary value problem, they are

dependent only on the fluid properties, frequency, geometry of the fluid domain, the

position of the node (e.g. drivers ear location) and the boundary admittance. Due

to this, the influence coefficients have to be computed only once for the cavity. For

every subsequent iteration, the normal structural velocity requires a simple scalar

multiplication with the influence coefficients to obtain the SPL at that location.

Marburg et al. (2002) extended the concept of influence co-efficients and applied

it to a box like structure made of simple beams and panels. The panel thicknesses

varied from about 1.2mm to 3mm. A sine sweep signal was used to excite the struc-

ture. The structural part of the analysis (Modal analysis and response calculation

using mode superposition method) was carried out using FE code ANSYS. The in-

fluence co-efficients were then extracted from a fluid boundary value problem and

these co-efficients were multiplied with the structural normal velocity. The structural

normal velocity was varied by varying the shell thicknesses (design variables) and

performing a harmonic analysis on the structure for each iteration. Some guidelines
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for modeling welds and junctions are also highlighted. Optimization was carried out

using the random iteration method available within the FE package ANSYS (AN-

SYS 2005). A total of about 500 computations of the objective function provided

the optimized design. Additionally, masses were added close to the front panel to

investigate their effects on the sound pressure level. As expected, a decrease in SPL

levels were noticed when the mass was added. Results of the optimization report

decrease in noise levels up to 6.2dB at certain locations. The optimized simulation

model was then tested in reality to validate and confirm the improvements. Exper-

imental results indicated a maximum decrease of 6.7dB. The reliable end frequency

range for the structural model (6577 linear shell elements) was found to be around

60Hz. Above this frequency, the stiffness of the modeled structure is too high, which

the authors conclude might be due to the inaccuracies in modeling edges and welded

connections.

Further, Marburg and Hardtke (2002) applied a direct modification technique on

shell meshes to optimize the floor panel of a sedan vehicle. Although there was no

scope for shape optimization (since the floor panel is connected to a number of other

structural components), the thickness of the shell meshes was optimized. 33 design

variables took the form of local and global modification functions, which are de-

scribed by polynomial functions. A Component Mode Synthesis (CMS) technique,

by which the floor panel is represented as a detailed structural finite element model,

is coupled with a super element, which represents the rest of the sedan body struc-

ture, has been used in the study. A BE model is used for the fluid. The concept of

computing noise transfer functions, however, remains the same as described above.

The optimized structure proved to reduce the SPL by 3.8dB in certain frequency

range.

Marburg et al. (2003) investigated the effect of spare wheel on the noise trans-
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fer function inside a sedan vehicle. Excitations, in the form of unit forces were

applied on two locations, and response computed. Only the part of the structure

needing modification (assuming this modification is very small with respect to the

fluid wavelength) was modeled, while the rest of the structure was represented by a

super element. Material property (by artificially increasing the Young’s modulus by

a factor of 106 in this case) modifications were then suggested to stiffen the wheel

well portion of the structure. Around 1.2dB reduction in noise transfer functions

have been observed. Experimental validation of the optimization results has also

been presented.

The sequential adjoint variable method employing a reverse solution process was

developed in Kim et al. (2003) for uncoupled structural-acoustic optimization prob-

lems. Basically, in this approach, the adjoint load is obtained from boundary el-

ement re-analysis, and the adjoint variable is calculated from structural dynamic

re-analysis. The deployment of the adjoint variable method offers significant savings

in computational time for design sensitivity calculations. As a starting point, the

structural normal velocities were generated using the mode superposition method.

The computed normal structural velocity is then projected to a fluid BE mesh to

compute the response. Then, the reverse solution process is employed for the de-

sign sensitivity calculation using the adjoint variable method. Finally, a function

call is made to a sequential quadratic programming algorithm to search for a global

minimum. The structural and acoustic responses were obtained using commercially

available FE packages MSC NASTRAN and LMS SYSNOISE. The authors have

successfully applied this approach in Dong and Kim (2003), Kim et al. (2004) to

optimize a large number of design variables. The shell thicknesses and even the

material costs have been used as objective functions, subject to structural weight as

the side constraint. Results report decrease in sound pressure level up to about 6dB

in certain cases.
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Fernholz and Robinson (1998) studied the influence of lamination angles of com-

posite materials on the interior noise levels in an aircraft. To demonstrate the

feasibility of the approach, the authors carried out investigations on two computa-

tional models: (a) Scale cylinder model and (b) Coupled FE/FE model of an eight

to ten passenger twin turboprop aircraft. The primary approach used by the au-

thors, was to compute the response quantities of a Eulerian (u/p) formulation using

the uncoupled modal superposition approach. The authors acknowledged the fact

that the method has a particular disadvantage in the formulation of modal damp-

ing. At various stages of this work (analytical-numerical sensitivity comparisons,

modal truncation assessment), the direct inversion method has been chosen to com-

pare the accuracy of other approximation methods. 500 structural modes (up to

650.4Hz) and 200 fluid modes (up to 480.94Hz.) were used to model the behavior of

the aircraft fuselage and cabin interior over an excitation frequency range of 50 to

250Hz. 3 percent structural damping was specified for the elements with composite

material properties. The optimization problem involved minimizing pressure levels

at ten fluid grid locations, chosen to represent the approximate listening locations of

the passengers in the cabin. Design variables took the form of 8 graphite epoxy face

sheets of a honeycomb sandwich construction. In terms of optimization algorithm,

a combination of the method of steepest descent and feasible directions was applied.

Through the proposed optimization framework, the peak acoustic response in the

aircraft interior cabin was reduced by 4.03 dB.
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The starting point for a computational investigation is a statement of the governing

equations for the phenomena under study. In this chapter, the governing equations

and subsequently, the FE/FE discretization for fully coupled fluid-structure inter-

action is presented. The advantages and drawbacks of different formulations briefly

reviewed. This presentation, for the purposes of consistency and coupled formulation

comparisons, follows the notation given by Desmet (1998), Desmet and Vandepitte

(2005).

3.1. Fully Coupled Structural-Acoustic Discretization

For an interior, fully coupled structural-acoustic case and considering the enclosed

acoustic fluid domain, DV , the boundary surface Da (Da = Ds ∪ Dve ∪ Dp ∪ Dz)

contains an elastic surface Ds as shown in Figure:[3.1]. Considering the boundary

surface, four different types of boundary conditions can be applied on Da of the

bounded fluid domain DV :

(a) Applied normal velocity on Dve: vn = (j/ρ0ω).(∂p/∂n)

(b) Normal velocity continuity on Ds: vn = (j/ρ0ω).(∂p/∂n) = jωun= v̄n

(c) Applied pressure on Dp: p = p̄
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(d) Applied normal impedance on Dz : p =Z̄.vn

where, p̄ is a prescribed pressure function, v̄ is the prescribed normal velocity func-

tion, Z̄ is the prescribed normal impedance function, un is the normal structural

displacement and n denotes the normal to the boundary surface of Da. The nor-

mal velocity continuity condition enforces the two-way fluid-structure coupling such

that the normal fluid velocity equals the normal structural velocity at the coupling

interface, often referred to as the wetted surface.

Figure 3.1.: Interior Coupled Structural-Acoustic System.

The steady-state pressure p (changes to reference pressure) at any point, r, in

a homogeneous, inviscid, irrotational fluid in domain DV is governed by the linear

Helmholtz wave equation:

∇2p+ k2p = 0 (3.1)

where, ∇2 is the Laplacian operator, p is the acoustic pressure, and k is the wave

number (k = ω/c), ω is the circular frequency, and c is the speed of sound in the

acoustic medium. Taking into account a purely acoustic excitation, q, located within

the fluid domainDV and by confining the acoustic field variables to their steady-state
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values for a time-harmonic excitation , the wave equation can be written as:

∇2p(r) + k2p(r) = −jρfωq(r) (3.2)

where, r is any point in the fluid domain, ρf is the fluid density and q(r) is a dis-

tribution of acoustically applied forces, in this case the volume velocity per unit

volume in domain DV .

An equivalent weighted residual formulation of the above Helmholtz equation

(Equation:3.3) is given by:

∫
DV

p̆(∇2p(r) + k2p(r) + jρfωq(r)) dDV = 0 (3.3)

∫
DV

[
∂

∂x
(p̆
∂

∂x
) +

∂

∂y
(p̆
∂

∂y
) +

∂

∂z
(p̆
∂

∂z
)

]
dDV −

∫
DV

(
∂p̆

∂x

∂p

∂x
+
∂p̆

∂y

∂p

∂y
+
∂p̆

∂z

∂p

∂z

)
dDV

+

∫
DV

k2p̆p dDV +

∫
DV

jρfωp̆q dDV = 0 (3.4)

where, p̆ is the weighting function which is uniquely defined within the defined vol-

ume DV and on the boundary surface of the acoustic domain Da.

According to Gauss divergence theorem, the integral of the normal component

of a vector field
→
φ , taken over a closed surface Da, is equal to the integral of the

divergence of the vector field, taken over the volume DV , enclosed by the surface

Da. This can be written as:

∫
DV

(→
∇ .
→
φ
)
dDV =

∫
Da

(→
φ .→n

)
dDa (3.5)
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where, →n is the unit normal vector. Using this theorem, and applying this on the

first integral term Equation:[3.3] yields:

∫
DV

(→
∇ p̆.
→
∇p
)
dDV − ω2

∫
DV

(
1

c2
p̆p

)
dDV

=

∫
DV

(jρfωp̆q) dDV −
∫

Da

(jρfωp̆
→v .→n ) dDa (3.6)

Note that the transformation of the momentum equation yields the desired re-

lationship between the steady-state fluid velocity vector field and the steady-state

pressure field, given by:

→v =
j

ρfω

→
∇p (3.7)

Now, the boundary conditions for an uncoupled acoustic problem1 are as follows:

(a) Applied normal velocity (Neumann Boundary Condition) on Dve:
→v .→n = v̄

(b) Applied pressure (Dirichlet Boundary Condition) on Dp: p = p̄

(c) Applied normal impedance (Robin Boundary Condition) on Dz=
→v .→n = p/Z̄

Using the finite element method, the fluid domain DV is discretized into a number

of finite elements, and a number of nodes, ne, are defined at some particular locations

(usually in the corner of each element face) in each element. On each element, the

distribution of the pressure p, is approximated as a pressure expansion p̂ in terms

prescribed shape functions, N el
i . Note that for the commonly used linear tetrahedral

and linear hexahedral pressure fluid elements the number of element shape functions

is equal to the number of nodes. Each shape function N el
i is defined, such that it

has a value of unity at node i of the element and that it is zero at all other element

nodes. This can be verified in the model by substituting nodal coordinate values

in the prescribed pressure expansion. Therefore, each pressure approximation, p̂,

1Note that for an uncoupled problem (i.e. purely acoustic), the boundary surface Da = Dve ∪
Dp ∪Dz.
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directly represents the pressure approximation pi at node i of the element. This is

written as:

p(x, y, z) ≈ p̂(x, y, z) =

np∑
i=1

N el
i (x, y, z) p̂i (3.8)

where, np is the number of shape functions N el
i , and p̂ are the desired pressure

approximations. In the next step, based on the local shape functions, N el
i , global

shape functions, Ni, are constructed. Here, the global shape function Ni is identical

to the corresponding element shape function N el
i , while it is zero in all other element

domains. In this way, a global pressure expansion can be written as:

p(x, y, z) ≈ p̂(x, y, z) =

nf∑
i=1

Ni(x, y, z) p̂i = [N ] p̂i (3.9)

where, [N ] is the vector of global shape functions and p̂i is the vector of unknown

nodal pressure values and nf is the total number of nodes.

In the weighted residual formulation approach, the weighting function for weighted

residual is expanded in the same as the shape function as in Equation:[3.8]. This

gives:

p̆(x, y, z) =

nf∑
i=1

Ni(x, y, z) p̆i = [N ] p̆i (3.10a)

→
∇ p̆ = [B] p̆i (3.10b)

since,

→
∇ p̂ =

[
∂p̂

∂x

∂p̂

∂y

∂p̂

∂z

]T

= [∂] .[N ] p̂i = [B] p̂i (3.10c)

Substituting the Equations:[3.10a,3.10b,3.10c] into the first term of the weighted

residual formulation in Equation:[3.6] yields:

∫
DV

(→
∇ p̆.
→
∇p
)
dDV =

∫
DV

(→
∇ p̆.
→
∇ p̂
)
dDV =

∫
DV

(
([B].{p̆i})T . ([B].{p̂i})

)
dDV

(3.11)
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This directly yields the inverse mass or the so called acoustic stiffness matrix as

follows:

∫
DV

(→
∇ p̆
→
∇ p̂
)
dDV = {p̆i}T

[Ka]︷ ︸︸ ︷(∫
DV

(
[B]T [B]

)
dDV

)
{p̂i} (3.12a)

= {p̆i}T [Ka] {p̂i} (3.12b)

Each entry of the acoustic stiffness matrix, taking into account common nodes (due

to the fact that the global shape functions have only non-zero entries for elements

to which the node i and node j belong) yields:

Ki,j =

∫
DV

(
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
+

∂Ni

∂z

∂Nj

∂z

)
dDV (3.13a)

=

zi,j∑
el=1

[∫
DVel

(
∂N el

i

∂x

∂N el
j

∂x
+

∂N el
i

∂y

∂N el
j

∂y
+

∂N el
i

∂z

∂N el
j

∂z

)
dDV

]
(3.13b)

where, zi,j are the number of common elements to which both node i and j belongs.

This means that most of the entries in the Equation:[3.13b] are zero, since each

element shares nodes with common adjacent nodes. This means that, the acoustic

stiffness matrix is a sparse matrix.

Therefore, one can observe that the global computation of the acoustic stiffness

matrix, can be obtained by a two-step procedure:

(a) First, all individual element stiffness matrices are computed.

(b) Now, the non-zero entries of the global element stiffness matrix are obtained

by addition of the corresponding entries2. This results in the non-zero entries

2This can be obtained by the addition of entries belonging to each element:

Kel
i,j =

∫
DVel

(
∂Nel

i

∂x

∂Nel
j

∂x
+

∂Nel
i

∂y

∂Nel
j

∂y
+

∂Nel
i

∂z

∂Nel
j

∂z

)
dDV

where, el represents a single element domain.
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in the stiffness matrix appearing in a narrow band around the matrix diago-

nal, yielding a sparsely populated, banded stiffness matrix. In this work, in

Section:[5], sparsity plots of the resulting matrices are illustrated.

Returning to the equivalent Helmholtz weighted residual formulation, the acoustic

mass matrix can be computed as follows:

−ω2

∫
DV

(
1

c2
p̆p̂

)
dDV = −ω2{p̆i}T

Ma︷ ︸︸ ︷[∫
DV

(
1

c2
[N ]T [N ]

)
dDV

]
{p̂i} (3.14a)

= −ω2{p̆i}T . [Ma] . {p̂i} (3.14b)

Similar to the acoustic stiffness matrix, the acoustic mass matrix can be com-

puted via a two-step procedure based on the computation of individual element

mass matrices given by:

Mi,j =

∫
DV

(
1

c2
[Ni] [Nj]

)
dDV (3.15a)

=

zi,j∑
el=1

[∫
DVel

(
1

c2
[
N el

i

] [
N el

j

])
dDV

]
(3.15b)

By using the relationship given in Equation:[3.10a], for p̆, the acoustic source term

in Equation:[3.6], can be written as:

∫
DV

(j ρf ω p̆ q) dDV = {p̆i}T .

Qi︷ ︸︸ ︷[∫
DV

(
j ρf ω [N ]T q

)
dDV

]
(3.16a)

= {p̆i}T . {Qi} (3.16b)

It is worth noting that for an acoustic point source of magnitude q́i, located at

any point in the fluid domain (other than the boundary surface), the source vector

56



3. Finite Element Theory

in Equation:[3.16b] becomes:

{Qi} = j ρf ω

[∫
DV

(
q́i.[N ]T .δ

)
dDV

]
(3.17)

where, δ is the Dirac delta function at the specified node of acoustic excitation3.

Returning to the boundary conditions for the uncoupled acoustic problem, the

velocity and the impedance boundary condition can be incorporated by substitutions

into the second term on the right hand side of Equation:[3.6]. Indeed, the boundary

conditions can be written as split integral terms as follows:

−
∫

Da

(j ρf ω p̆ →v .→n ) .dDa = −
∫

Dve

(j ρf ω p̆ v̄n) dDa −
∫

Dz

(
j ρf ω p̆ Ā p̂

)
dDa

−
∫

Dp

(j ρf ω p̆ →v .→n ) dDa (3.18)

where, Ā = 1/Z̄. Now, the first term on the right hand side of Equation:[3.18], can

be re-written as:

−
∫

Dve

(j ρf ω p̆ v̄n) dDa = {p̆i}T .

Vi︷ ︸︸ ︷[∫
Dve

(
−j ρf ω [N ]T v̄n

)
dDa

]
(3.19a)

= {p̆i}T .{Vi} (3.19b)

For a single specified velocity input on node i, the velocity vector can be written

as:

{Vi} =

[∫
Dve

(−j ρf ω [Ni] v̄n) dDa

]
(3.20)

However, it can be noted that the velocity input is only specified on the faces of

an acoustic element (f el
mi, D

f
el which form a part of the velocity boundary condition

surface) since the boundary surface of any given element type is an explicit union of

3The finite element program ANSYS requires an input of ρf .ω.q́i resulting in volume acceleration
and has units of mass/time2

57



3. Finite Element Theory

the faces. Therefore, the global shape functions specified in Equation:[3.20], [Ni] and

{Vi}, has a non-zero value for nodes located on the boundary surface of an element

subject to input velocity. This can be written as:

{Vi} = −j ρf ω

zmi∑
e=1

fel
mi∑

f=1

[∫
Df

el

([
N el

i

]
.v̄n

)
dDa

]
(3.21)

where, zmi are the number of elements for which the node i is on the respective

element face f el
mi on the given boundary surface of the volume DV . This form of

excitation is often specified in an uncoupled force response analysis or the so called

chained approach, where the structural displacements from a forced response are

used as excitations in an uncoupled acoustic model. For a complete description of

this process, the reader is referred to Desmet (1998), Desmet and Vandepitte (2005)

and Marburg (2002a).

It is now possible to observe that Equation:[3.18] also allows the formulation of

the acoustic damping matrix. The second term in Equation:[3.18], can be written

in terms of the shape function matrix as follows:

−
∫

Dz

(
j ρf ω p̆ Āp̂

)
dDa = j ω {p̆i}T .

[Ca]︷ ︸︸ ︷[∫
Dz

(
ρf Ā[N ]T .[N ]

)
dDa

]
.{p̂i} (3.22a)

= j ω {p̆i}T .[Ca].{p̂i} (3.22b)

where, [Ca] is the acoustic dissipation or the damping matrix. Similar to the velocity

input, the admittance, or the so called acoustic damping value is specified on the

faces of the acoustic element and therefore the elements of [Ca]can be compactly
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written as:

[Ci,j] =

∫
Dz

(
ρf Ā [Ni] [Nj]

)
dDa (3.23a)

=

zA:i,j∑
f=1

[∫
Dfz

(
ρf Ā [N el

i ] [N el
j ]
)
dDa

]
(3.23b)

Finally, the third term in Equation:[3.18], can be written as:

−
∫

Dp

(j ρf ω p̆→v .→n ) dDa = {p̆i}T .

Pi︷ ︸︸ ︷[∫
DV

(
−j ρf ω [N ]T→v .→n

)
dDa

]
(3.24a)

= {p̆i}T .{Pi} (3.24b)

which is non-zero only if the node i is on the boundary surface of dDp. It is worth

noting that applied pressure is a Dirichlet boundary condition and enters the global

acoustic finite element by the elimination of constraint equations and shifting the

mass, stiffness and damping (if present) terms to obtain a well conditioned set of

equations (ANSYS 2005).

Substituting the expressions given in Equations:[3.12b, 3.14b, 3.16b, 3.19b, 3.22b,

3.24b] into the so called weak-form of the weighted residual formulation given by

Equation:[3.6], yields:

{p̆i}T .
(
[Ka] + j ω [Ca]− ω2[Ma]

)
.{p̂i} = {p̆i}T . ({Qi}+ {Vi}+ {Pi}) (3.25)

Performing the required cancelations, a set of Na equations with Na unknown

pressure values can be obtained as follows:

(
[Ka] + j ω [Ca]− ω2[Ma]

)
.{p̂i} =

F̃a︷ ︸︸ ︷
({Qi}+ {Vi}+ {Pi}) (3.26)
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A finite element discretization of Equation:[3.1] for the acoustic discretization, in

terms of global shape functions for the nodal pressure p, results in :

(
−ω2[Ma] + jω[Ca] + [Ka]

)
.{p} = {F̃a} (3.27)

where the subscript a denotes the matrix terms belonging to the acoustic medium.

Turning then to the enclosing structure, and considering the uncoupled structural

domain, the steady state displacements ûx, ûy, ûz, along the middle surface of an

elastic shell in the x, y, z co-ordinates are given by (Desmet and Vandepitte 2005;

Desmet 1998): 
ûx(x, y, z)

ûy(x, y, z)

ûz(x, y, z)

 = [Ns].{ui} + [Nw].{ūi} (3.28)

where, [Ns] and [Nw] are the structural global shape functions related to the uncon-

strained and constrained degrees of freedom given by {ui} and {ūi} respectively. A

forced response analysis of the uncoupled structure in the frequency domain is quite

straightforward (Bathe 1995), resulting in the uncoupled finite element model for

the set of unconstrained degrees of freedom as follows:

(
−ω2[Ms] + jω[Cs] + [Ks]

)
.{u} = {F̃s} (3.29)

where, [Ms] is the structural mass matrix, [Cs] is the structural damping matrix4,

[Ks] is the structural stiffness matrix and {F̃s} is the structural excitation vector,

which in this case consists of forces and moments applied on the part of the shell

boundary, the external load fs applied normal to the discretized shell surface and the

terms resulting from the constraint degrees of freedom from the structural model.

4This later becomes a part of the global structural-acoustic damping matrix, representing damping
in the structural domain.
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Assuming only the external load fs applied normal to the discretized shell surface

as the prescribed load, {F̃s} can be written as:

{F̃s} =
nse∑
el=1

[∫
Dse

(
[Ns]

T .{nel}.fs

)
dDa

]
(3.30)

where, nse is the number of elements in the shell discretization Dse and {nel} is the

unit normal vector.

Throughout this work, the structural damping matrix [Cs], is written as:

[Cs] = α[Ms] + (β + βc)[Ks] +
Nm∑
j=1

[(
βm

j +
2

ω
βξ

j

)
[Ks]j

]
(3.31)

where, α is the mass matrix multiplier, β is the stiffness matrix multiplier, βc is the

variable stiffness matrix multiplier, Nm are the number of materials, βm
j stiffness

matrix multiplier for material j, βξ
j is the constant, frequency-independent stiffness

matrix coefficient for material j, [Ks]j is the part of the structural stiffness matrix

belonging to the material j.

Therefore, it can be observed that an explicit participation of [Cs] can be avoided

by using the structural damping model, in which the damping effect is modeled by

defining a complex stiffness5. The finite element software, ANSYS formulates con-

stant damping via the command DMPRAT and MP, DMPR which adds imaginary

terms to the stiffness matrix according to the relationship (ANSYS 2005):

βc =
2

Ω
ζ (3.32)

5It is worth reminding the reader that the complex stiffness approach does not have an equivalent
time domain representation.
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where, βc is the constant multiplier applied to the structural parts of the coupled

stiffness matrix, and Ω is the frequency in rad/s and ζ is the constant damping ratio.

Note the constant damping is frequency independent by definition. This implies that

[Ks] is complex valued. In other words, the damping is included at a constitutive

level in the structural domain using the complex stiffness approach (also known as

structural or hysteresis damping) as follows (Meirovitch 1980; Boily and Charron

1999; Davidson 2004; ANSYS 2005):

K̂s = Ks(1 + j2ζs) (3.33)

where, Ks is the structural stiffness matrix and ζs is the constant damping ratio

for the structural domain. Note that a similar approach can also be adapted for

the acoustic domain, relating to the bulk modulus of the fluid, given by (Boily and

Charron 1999; Davidson 2004):

B̂f = Bf (1 + j2ζf ) (3.34)

where, Bf is the bulk modulus of the fluid and ζf is the constant damping ratio for

the fluid domain. At this point, it is worth mentioning that, for complex arithmetic,

when direct solvers like the LU decomposition (Meyer 2000) are employed to solve

the set of linear equations :

[A] . {x} = {b} (3.35)

operation counts are increased by a factor of four, and storage by a factor of two

(Harari and Hughes 1992). Another approach to include acoustic damping effects

in the fluid can be achieved by specifying a boundary admittance coefficient, defined

as follows (ANSYS 2005):

βac =
ρf c

Re|w̃|
(3.36)
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where, w̃ is the specific acoustic impedance per unit area. For interior, structural-

acoustic NVH applications, the values for βac ideally range from 0 to 16. In this

manner, the acoustic loss effects are directly modeled by inserting terms into the

acoustic damping matrix, Ca, in the uncoupled acoustic Equation:[3.27].

Returning to the fully coupled boundary conditions, it is possible to observe that

two additional loads must be considered for a completely coupled formulation. They

are:

(1) The additional force loading of the acoustic pressure on the elastic shell struc-

ture along the fluid-structure coupling interface.

(b) The continuity of the normal shell velocities and the normal fluid velocities at

the fluid-structure coupling interface.

The additional force loading of the acoustic pressure on the structure can be

considered as an additional normal load in the uncoupled structural model. This

modifies the uncoupled structural equation (Equation:3.29) as follows:

(
−ω2[Ms] + jω[Cs] + [Ks]

)
.{u} + [Kfs].{p} = {Fs} (3.37)

where, the cross coupling stiffness matrix [Kfs] and the loading vector {Fs} are given

by:

[Kfs] = −
nse∑
el=1

[∫
Dse

(
[Ns]

T .{nel}.[Na]
)
dDa

]
(3.38a)

{Fs} = {F̃s} +
nse∑
el=1

[∫
Dse

(
[Ns]

T .{nel}.[Np]{p̄i}
)
dDa

]
(3.38b)

where, [Ns], [Na] are the structural and acoustic shape functions associated with the

unconstrained degrees of freedom, [Np] are the shape functions associated with the

6βac=0.0 represents no sound absorption and βac= 1.0 represents full sound absorption along the
acoustic boundary with or without the fluid-structure coupling interface.
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specified pressure values {p̄i} at node i belonging to the acoustic boundary surface.

The continuity of the normal shell velocities and the normal fluid velocities can be

considered as an additional velocity input on the boundary surface of the acoustic

domain. This results in a modified acoustic equation (from Equation:3.27) as follows:

(
−ω2[Ma] + jω[Ca] + [Ka]

)
.{p} − ω2[Mfs].{u} = {Fa} (3.39)

where, the cross coupling mass matrix [Mfs] and the loading vector {Fa} are given

by:

[Mfs] =
nse∑
el=1

[∫
Dse

(
ρf [Na]

T .{nel}T .[Ns]
)
dDa

]
(3.40a)

{Fa} = {F̃a} +
nse∑
el=1

[∫
Dse

ρf ω
2
(
[Na]

T .{nel}T .[Nw]{ūi}
)
dDa

]
(3.40b)

Note that a comparison between Equations:[3.38a,3.40a] indicates that the mass

and stiffness coupling matrices are related as follows:

[Mfs] = −ρf [Kfs]
T (3.41)

Combining the modified structural and acoustic equations given in Equa-

tions:[3.37,3.39] leads to the well known combined Eulerian displacement - pressure

(u/p) formulation for the structural-acoustic model as a whole (Zienkiewicz and

Newton 1969; Craggs 1971; Craggs 1973):

−ω2

 Ms 0

Mfs Ma

+ jω

 Cs 0

0 Ca

+

 Ks Kfs

0 Ka



 u

p

 =

 Fs

Fa

 (3.42)
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Equivalently, the fully coupled model can be written in the time domain as follows:

 Ms 0

Mfs Ma


 ü

p̈

+

 Cs 0

0 Ca


 u̇

ṗ

 +

 Ks Kfs

0 Ka


 u

p

 = FMIsa µ(t)

(3.43a)

and,

y(t) = LT

 u(t)

p(t)

 (3.43b)

where, Ms is the structural mass matrix, Ma is the acoustic mass matrix (acous-

tic compressibility matrix); Ks is the structural stiffness matrix, Ka is the acoustic

stiffness matrix (acoustic inverse mass/mobility matrix); Mfs is the coupling mass

matrix, and Kfs is the coupling stiffness matrix; u denotes the structural displace-

ments, p denotes the nodal pressures in the fluid domain, µ(t) is the input force

vector and FMIsa is the multiple-input structural-acoustic input distribution matrix

consisting of Fs and Fa which denote the input distribution force(s) on the struc-

tural domain and constrained acoustic pressure degrees of freedom (DOF’s) or purely

acoustic excitation, in the form of volume acceleration belonging to the fluid domain

respectively. The matrix LT is the output scattering matrix (or the so called field

point matrix), of dimension N × N , which is a square identity matrix to restore a

complete output of states, which in this case the displacements and pressures corre-

sponding to the structural and fluid domain respectively. It is worth noting that, in

the case where fewer outputs are required, the matrix LT is permuted to form 1′s

only at required output DOF’s. Thus, if an average value of the desired states are

sought, the diagonal entries of the square matrix LT would be 1/N , where, N is the

dimension of the original higher dimensional model.

Comparing Equation:[3.43a] to a one-way coupled analysis, the coupled formula-

tion results in unsymmetric stiffness and mass matrices given by the terms Kfs and
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Mfs respectively. It is worth mentioning that Equation:[3.43a] is unsymmetric due

to the fact that the force loading of the fluid on the structure is proportional to the

pressure, given by the term Kfs in the coupled stiffness matrix, and the force loading

of the structure on the fluid is proportional to acceleration, given by the term Mfs

in the coupled mass matrix (Desmet 1998; Desmet and Vandepitte 2005).

The two most common methods for modal reduction of the Eulerian (u/p) for-

mulation are the standard coupled mode superposition technique and the modal

synthesis via the uncoupled modes approach. Both these methods utilize eigenvec-

tors obtained from an undamped modal analysis of the fully coupled or uncoupled

systems. Suppressing any damping terms, the fluid and or the structural forcing, and

any terms associated with a reactive surface, the non symmetric eigenvalue problem

for the coupled formulation can be written as:

−ω2

 Ms 0

Mfs Ma

+

 Ks Kfs

0 Ka



 u

p

 = 0 (3.44)

Application of the the coupled modal superposition to Equation:[3.44] to form a

reduced system must be done with some caution, since this unsymmetric system

has distinct left and right eigenvector sets. At this point, it is worth reminding the

reader that the undamped, fully coupled, unsymmetric eigenvalue problem is known

to have real eigenvalues (Ma and Hagiwara 1991; Stammberger and Voss 2007). The

modal parameters (eigenvalues and eigenvectors) of the coupled system result from

the following right eigenvalue problem (Desmet 1998):

 Ks Kfs

0 ρ−1
f Ka

 {Ψc} = ω2
c

 Ms 0

−KT
fs ρ−1

f Ma

 {Ψc} (3.45)
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where, c = 1 . . . ns + na, {Ψc} is the eigenvector and ωc is the coupled natural fre-

quency of that mode. However, the left eigenvectors {Ψ̂c} of the left eigenvalue

problem differ from the right eigenvectors {Ψc}. Note that the left eigenvalue prob-

lem is given by:

{Ψ̂c}T

 Ks Kfs

0 ρ−1
f Ka

 = ω2
c{Ψ̂c}T

 Ms 0

−KT
fs ρ−1

f Ma

 (3.46)

Although the right and left eigenvectors are distinct, it is possible to retrieve the

left eigenvectors (from the right eigenvectors) to build the complete modal model

for a reduced modal superposition analysis. Following the works by Luo and Gea

(1997), Desmet (1998), Sysnoise (2004), the structural and acoustic components of

the eigenvectors corresponding to the na acoustic DOF in each pair of associated

left and right eigenvectors, are identical and that the components, which correspond

with the ns structural degrees of freedom in the left eigenvector are given by:

{Ψ̂c} =

 Ψ̂sc

Ψ̂ac

 =

 ω2
cΨsc

Ψac

 (3.47)

where the subscripts sc and ac correspond to the structural and acoustic compo-

nents7 of the respective eigenvectors. Now, the Eulerian (u/p) formulation can be

transformed to a modal model by expanding the nodal DOFs in terms of mc coupled

modes of the system as follows:

 u

p

 =
mc∑
c=1

Φc

 Ψsc

Ψac

 = [Ψ]{Φc} (3.48)

where, [Ψ] is the matrix of right eigenvectors and {Φc} is the vector of modal par-

ticipation factors. A projection using Equation:[3.48] on Equation:[3.42], yields the

7This result is achieved by imposing the M-orthonormal condition on the transformed modal
co-ordinate model. A detailed derivation can be found in Luo and Gea (1997).
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required modal modal as follows:

[−ω2[M̂ ] + jω[Ĉ] + [K̂]]{Φc} = {F̂} (3.49)

where, the modal stiffness, mass matrices are given by:

[K̂] = [Ψ̂]T

 Ks Kfs

0 ρ−1
f Ka

 [Ψ]; [M̂ ] = [Ψ̂]T

 Ms 0

−KT
fs ρ−1

f Ma

 [Ψ] (3.50)

and the modal damping matrix and the forcing function are given by:

[Ĉ] = [Ψ̂]T

 Cs 0

0 ρ−1
f Ca

 [Ψ]; [F̂ ] = [Ψ̂]T

 Fs

ρ−1
f Fa

 (3.51)

The orthogonality of the left and right eigenvectors with respect to the mass ma-

trix means that the resulting modal matrices: [K̂],[M̂ ],[Ĉ] are diagonal matrices.

Thus, the use of eigenvectors of modal reduction is often referred to as the diagonal-

ization method. Further, by normalizations of the eigenvectors to the mass matrix,

the modal mass matrix becomes the unity matrix, and the modal stiffness matrix

becomes a matrix where the diagonal entries are the squared of the eigenfrequency

value.

An alternate approach, adopted by ABAQUS (2005), is the symmetric formulation

following the works of Morand and Ohayon (1995), Ohayon and Soize (1998). In

this method, an auxiliary variable is introduced [τ = p/ω2], and the system of

equations are augmented [Ka p = ω2 Ka τ ], yielding the following symmetric coupled
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formulation:−ω2


Ms 0 0

0 0 0

0 0 Ka

+


Ks Kfs Kfs

−Mfs −Ma Ka

0 KT
a 0





u

p

τ

 = 0 (3.52)

This above formulation now allows for the construction of the left and right eigen-

vectors of Equation:[3.44] via a Lanczos based eigenvalue extraction routine. How-

ever, note that the size of the symmetric matrix is now [Ns + (2×Nf )], where, Ns

and Nf are the dimensions of the individual structural and fluid matrices. The re-

mainder of the procedure consists of using the left and right eigenvector subspaces to

compute the desired modal quantities such as participation factors and project the

mass, stiffness, and damping matrices to obtain a reduced system of equations. The

reader is referred to ABAQUS (2005) for a complete description of this procedure.

An alternative symmetric method, requiring a diagonal acoustic mass matrix, can

be found in MSC/NASTRAN (2005).

The second popular modal approach via the eigenvalue/eigenvector based pro-

cedure, is the uncoupled, symmetric modal formulations of the structural-acoustic

problem (Wolf 1977; Fahy 1985; Tournour and Atalla 2000). In general, in this ap-

proach, the structural and acoustic expansions, are written individually as follows:

{u} =
ms∑

m=1

φsm {ψsm} = [ψsm]{φs} (3.53a)

{p} =
ma∑

m=1

φam {ψam} = [ψam]{φa} (3.53b)

where, ms and ms are the number of uncoupled structural and uncoupled acoustic

modes of the system, [ψsm], [ψam] are matrices consisting the modal vectors {ψsm},

{ψam} arising from the respective uncoupled eigenvalue problems and {φs} and {φa}

are the structural and acoustic modal participation factors respectively.
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The substitutions of the uncoupled expressions given by Equations:[3.53a,3.53b]

in Equation:[3.42], yields the modal model, given by:

[−ω2[M̆ ] + jω[C̆] + [K̆]]{γ} = {F̆} (3.54)

where, {γ} =

 {φs}

{φa}

, and the modal stiffness and mass matrices are given by:

[K̆] =

 Js R

0 Ja

 ; [M̆ ] =

 Is 0

−ρfR
T Ia

 (3.55)

where, diagonal sub matrices Js and Ja are written as:

Js =


ω2

s,1 0
. . .

0 ω2
s,ms

 ; Ja =


ω2

a,1 0
. . .

0 ω2
a,ma

 (3.56)

where, Is, and Ia are the identity matrices of an order equal to the number of modes

retained in the respective basis. The matrix R and the forcing vector on the right

hand side of Equation:[3.54]is given by:

[R] = [ψsm]T [Kfs] [ψam]; {F̆} =

 [ψsm]T 0

0 [ψam]T


 Fs

Fa

 (3.57)

The modal damping matrix is given by:

[C̆] =

 [ψsm]T Cs [ψsm] 0

0 [ψam]T Ca [ψam]

 (3.58)

Note that, in this procedure, the uncoupled structural and acoustic modal vectors

are normalized with respect to their corresponding, individual mass matrices. This

means that, along the fluid-structure interface or the so called wetted surface, the
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continuity condition is violated. Therefore, a large number of modes should be

retained in the acoustic modal base. The problem becomes more complicated, if

the enclosed volume is filled with a higher density fluid. An illustration of the re-

duced efficiency of the uncoupled modal synthesis approaches (which treat fluid and

structure as separate components) can be found in Desmet (1998), Desmet and Van-

depitte (2005), Boily and Charron (1999), Tournour and Atalla (2000).

Finally, it is worth mentioning that an approach to the two uncoupled problems

can also be made via the AMLS formulation8 (ABAQUS 2005; Bennighof 1999;

Bennighof et al. 2000). Apparently, the efficiency of the general AMLS method can

be put down to two distinct factors (Gao et al. 2005):

(a) The method does not construct or maintain an orthonormal basis of the sub-

space into which the original eigenvalue problem is projected.

(b) The formulation of the method makes it suitable for an out-of-core implemen-

tation that requires a limited amount of input and output traffic.

On the other hand, it is also important to recognize that the AMLS gives ap-

proximate solutions that are less accurate than those computed utilizing standard

techniques such as the shift and invert Lanczos methods. For structural-acoustic

frequency response computations, existing literatures have based the AMLS formu-

lation on the velocity potential approach (Everstine 1981; Olson and Bathe 1985),

which renders the solution system of a gyroscopic type (Tournour and Atalla 2000).

Therefore, the velocity potential approach is not very suitable for the eigen solution

phase of modal reduction (Cipolla 2006). For a complete description of the distinct

phases (reduction, reduced eigen solution and recovery) involved in the AMLS pro-

cedure via the velocity potential approach based on the formulation described by

8In the FE software ABAQUS, for structural-acoustic frequency extractions that use the AMLS
eigensolver, the modes are computed using traction-free boundary conditions on the structural
side of the coupling boundary and rigid boundary conditions on the acoustic side.
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Everstine (1981), the reader is referred to ABAQUS (2005). Note that in compar-

ison with the diagonalization method, in this approach, the damping and coupling

matrices in modal coordinates are densely populated.

As discussed in the previous chapter, due to these drawbacks with other formula-

tions, and the fact that the unsymmetric (u/p) formulation is a direct relationship to

its experimental counterpart (unsymmetric formulation with displacement and pres-

sure as field variables), this thesis only considers only the Eulerian (u/p) formulation

of the structural-acoustic problem.
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3.2. Solution Procedures

The frequency domain structural acoustic coupled system described in the previous

section can be solved at each frequency of interest using a variety of well known

direct and iterative methods. The structural acoustic system yields:

−ω2

 Ms 0

Mfs Ma

+ jω

 Cs 0

0 Ca

+

 Ks Kfs

0 Ka




︸ ︷︷ ︸
[Asa]

x̃︷ ︸︸ ︷ u

p

 =

b︷ ︸︸ ︷ Fs

Fa



[Asa(ω)].{x̃(ω)} = {b} (3.59a)

and the output measurement vector given by,

y(ω) = LT{x̃(ω)} (3.59b)

The basic idea of solving the set of equations by the direct method is to form

[Asa] at each frequency of interest followed by a transformation of the system into

an equivalent system having a triangular form. This is then followed by a forward

and a backward substitution to yields the desired state vector.

[1]. Initialization: Form [Asa] for required frequencies

[2]. [L, U] factors: [Asa] = LdUd (Ld lower, Ud upper triangular matrix)

[2.1] Forward Substitution: Ld ỹ = b

[2.2] Backward Substitution: Ud x̃ = ỹ

[3]. Compute States: y(ω) = LT{x̃(ω)}

Figure 3.2.: Algorithm:1: Setup for solving linear systems via the direct method.

Note that due to the frequency dependence of the dynamic stiffness matrix, a new

system of equations must be solved in each user specified sub step.
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Subspace Techniques

Today, one of the popular choices for the reduction of very high order systems arising

in various fields of engineering (such as circuit simulation, CFD, MEMS) are based

on the computation of Padé or Padé type approximants via Krylov subspace tech-

niques. For example, it has been shown in various engineering applications (Grimme

1997; Malhotra and Pinsky 2000; Willcox 2000; Antoulas and Sorensen 2001; Bai

2002; Lassaux 2002; Willcox et al. 2002; Wagner and Malhotra 2003; Wagner et al.

2003; Bechtold et al. 2005a; Salimbahrami 2005) that the time required to solve re-

duced order models by implicitly matching some of the low frequency moments (and

therefore constructing a Padé or Padé type approximant) is reduced significantly

when compared to solving the original higher dimensional model, whilst maintain-

ing the desired accuracy of the solution. These methods define an orthogonal or

an oblique projection from the high dimensional space of the original model to a

lower dimensional space and vice versa and thereby define the reduced order model

with very good approximation properties. The goal of this chapter, is to discuss the

reduction methods by applying a projection using bases of some particular Krylov

subspaces. Reduction via linearization followed by moment matching and meth-

ods to directly preserve the second order structure of the underlying fully coupled

structural-acoustic formulation are also discussed.
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The reminder of the chapter is laid out as follows: Section:[4.1] describes the

general framework for second order systems for moment matching based reduced

order modeling. In Section:[4.2], the coupled system representation and moment ex-

pansions for the fully coupled structural-acoustic case is described. Section:[4.3] de-

scribes the reduced order modelling procedure for undamped and constantly damped

structural-acoustic systems. The one sided and two-sided (and multi-point) Arnoldi

processes form the main subject of this section. Section:[4.4] extends the reduction

methodology to fully coupled, frequency dependent damping. Techniques such as

linearization and structure preserving MOR via Two-sided Second order Arnoldi

process are presented and discussed. Finally, in Section:[4.5], a description of error

quantities and convergence properties are discussed.

4.1. General Framework for Reduction by Direct

Projection

After discretization in space of a general mechanical system model, one obtains a

system of ordinary differential equations of second order in matrix form as follows

(Bathe 1995):

[M]ẍ(t) + [C]ẋ(t) + [K]x(t) = Fu(t) (4.1)

y(t) = LT x(t)

where, t is the time variable, x(t) is a vector of state variables, u(t) is the input force

vector, and y(t) the output measurement vector which is used to extract the desired

state variable(s) x(t). The matrices M, C and K ∈ <N×N are the mass, damping

and stiffness matrices respectively. N is the state-space dimension. F ∈ <N×p and

L ∈ <N×m are the input distribution and output scattering matrix. The matrix

LT ∈ <N×N is a square identity matrix in the case of a complete output of states
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x(t) being required.

Assuming harmonic excitation of the form Fu(t) = Fejωt = {F}, a response of

{x} = {xmaxe
jφ}ejωt, where φ is the phase shift and removing the time dependency

term ejωt on both sides of Equation:[1] yields:

[−ω2[M] + jω[C] + [K]]{x} = {F} (4.2)

y(ω) = LT x(ω)

where, ω denotes the circular frequency, and {x} and {F} denote complex vectors

of state variables and inputs to the system respectively.

Ignoring damping, Equation:[4.2] becomes:

[−ω2[M] + [K]]{x} = {F} (4.3)

y(ω) = LT x(ω)

The principle of model order reduction is to find a lower dimensional subspace

[V ] ∈ <N×q, such that:

x ≈ [V ]z + ε (4.4)

where, z ∈ <q and q � N , such that the steady state or time-dependent behavior

of the original higher dimensional state vector can be well approximated by the

projection matrix [V ] in relation to a considerably reduced vector of order q, with

the exception of a small error, ε. Once the projection matrix V is found, the original

Equation:[4.3] is projected onto it. The projection produces a reduced set of system

equations, in second order form, as follows:

[−ω2[Mr] + [Kr]]{z} = {Fr} (4.5)
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yr(ω) = LT
r z(ω)

where the subscript r denotes the reduced matrix and:

[Mr] = [V T ][M][V ]; [Kr] = [V T ][K][V ]; {Fr} = V T{F};LT
r = LTV. (4.6)

It is worth noting that yr(ω) ≈ y(ω), with the exception of the small error ε.

Due to its low dimensionality, the solution to Equation:[4.5] is much faster than the

original higher dimensional model. There exist several methods to choose [V ]. In

this work, we choose the projection matrix [V ] to be a Krylov subspace (Krylov

1931; Reid 1970; Saad 1981) in order to provide the moment matching property (Su

and Craig 1991a). Given a matrix [A] and a vector g, a Krylov subspace of order q

is defined by:

Kq(A, g) = span(g, Ag, ....Aq−1g) (4.7)

where, g is called the starting vector and Ag, ....Aq−1g are vectors which define the

subspace. A straightforward application of the Krylov subspace methods for second

order system with damping produces a reduced order system which is of first or-

der. This is not so desirable because the properties of the matrices and the physical

significance of the original system could be destroyed. However, for a second-order

undamped system, an application of Krylov subspace methods, based on moment

matching, generates a reduced order model (ROM) in second order form (Su and

Craig 1991a).

In short, if the projection matrix [V ] is chosen from a Krylov subspace defined by:

Kq(K
−1M,K−1F ) = span(K−1F,K−1MK−1F, .......K−1M q−1K−1F ) (4.8)

then, the reduced order model matches q moments of the higher dimensional model.

Loosely speaking, if the qth vector spanning the Krylov sequence is present in matrix
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[V ] , we match the qth moment of the system. The block vectors K−1F and K−1M

can be interpreted as the static deflection due to the force distribution F , and the

static deflection produced by the inertia forces associated with the deflection K−1F ,

respectively (Su and Craig 1991a).

4.2. Coupled System Representation and Moments

Ignoring damping for the structure and fluid, the coupled equations become:


 Ks Kfs

0 Ka

− ω2

 Ms 0

Mfs Ma


 .

 u

p

 =

 Fs

Fa

 (4.9)

y(ω) = LT

 u

p


It can be seen that Equation:[4.9] is similar to Equation:[4.3] except that there is

explicitly more than one output in the case of Equation:[4.3]. These are displace-

ments of the structure and pressure levels at nodes inside the fluid. From a MOR

point of view, this is not of any concern, since the projection matrix [V ] is related to

the generalized co-ordinates, and is not directly related to nodal degrees of freedom.

In this case, the approximation becomes:

 u

p

 =

{
x

}
≈ [V ] {z}+ ε (4.10)

This form is often denoted as the change of state co-ordinates.

Ignoring damping and rewriting Equation:[3.43a] using Laplace transforms, in

terms of the input U(s) and the output Y (s) which are related by the transfer
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function H(s) = [Y (s)/U(s)], gives:

H(s) = LT (s2Msa +Ksa)
−1Fsa (4.11)

where, (s2Msa + Ksa) is called the characteristic polynomial matrix and the block

matrices Ksa, Msa and the forcing vector Fsa are given by:

Ksa =

 Ks Kfs

0 Ka

, Msa =

 Ms 0

Mfs Ma

, and Fsa =

 Fs

Fa

.

Expanding Equation:[4.11] using the Taylor series about s = 0 results in:

H(s) = LT (s2K−1
sa Msa + I)−1K−1

sa Fsa (4.12)

H(s) =
∞∑
i=0

(−1)iLT (K−1
sa Msa)

iK−1
sa Fsas

2i (4.13)

H(s) =
∞∑
i=0

mis
2i (4.14)

where, mi = (−1)iLT (K−1
sa Msa)

iK−1
sa Fsa are called the moments of H(s). Note that

for a value of s = s0 6= 0, the series expansion can be written as follows (Grimme

1997; Bai 2002):

H(s) =
∞∑
i=0

ms0
i (s− s0)

2i (4.15)

where, ms0
i = (−1)iLT ([Ksa + s2

0Msa]
−1Msa)

i([Ksa + s2
0Msa]

−1Fsa) are called the

shifted low frequency moments of H(s).

The transfer function described in Equation:[4.11], can be represented as a rational

function:

H(s) =
N(s)

D(s)
(4.16)

where, the numerator and denominator, given by N(s) and D(s), are both polyno-
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mials in s. A qth order Padé approximation1 of the transfer function, can be defined

as follows:

Hq(s) =
bq−1s

q−1 + ....+ b1s+ b0
aqsq + aq−1sq−1 + ....+ a1s+ 1

(4.17)

Now, the 2q co-efficients in Equation:[4.17], namely the co-efficients of N(s) and

D(s) can be selected to match the 2q terms of the Taylor series expansion of the

transfer function in Equation:[4.14], denoted by:

H(s) =
∑

mis
2i for i = 0 →∞ (4.18)

By matching some of these moments about s = 0, the reduced order model can

be constructed, as it directly relates the input to the output of the system. One

approach to construct the qth order Padé approximation, is to explicitly compute

the moments mi, using:

mi = (−1)iLT (K−1
sa Msa)

iK−1
sa Fsa (4.19)

and then generate the co-efficients of the polynomials in equation Equation:[4.17].

However, computing Padé approximants using explicit moment computations, is

done using the Asymptotic Waveform Evaluation (AWE), and suffers from funda-

mental numerical limitations and is numerically unstable (Gallivan et al. 1994;

Feldmann and Freund 1995). Each run of AWE generates only a small number of

accurate poles and zeros. The main reason for the instability in AWE, is the formu-

lation of explicit computation of moments given in Equation:[4.19].

By setting [A] = K−1
sa Msa, g = K−1

sa Fsa and l̄ = K−T
sa L the computation of mo-

1A Padé approximant, so called, is that rational function (of a specified order) whose power series
expansion agrees with a given power series to the highest possible order (Press et al. 2002).
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ments can be achieved by generating two sets of vectors (Freund 2001):

g, Ag, (A)2g, ...., (A)q−1g (4.20)

and,

l̄, (A)T l̄, ((A)T )2l̄, ....., ((A)T )q−1l̄ (4.21)

and computing the inner products to form the moments of the transfer function:

m2i = ((AT )il̄)T . (Aig) , m2i+1 = ((AT )il̄)T . (Ai+1g) (4.22)

for i = 0, . . . , q−1. Starting from this moment information2, the 2q co-efficients of

the numerator and denominator polynomials described in Equation:[4.17] can now

be computed by solving a system of linear equations with the moment information

stored in a Hankel matrix. The main problem with AWE (explicit moment gener-

ation) is that the vectors described by Equation:[4.20] and Equation:[4.21] quickly

converge to the right and left eigenvector corresponding to the dominant eigenvalue

of A, and so contain only part of the spectrum of A, which is often not sufficient to

approximate the original transfer function. The reader is referred to Pillage et al.

(1989), Ratzlaff et al. (1991), Chiprout and Nakhla (1994), Cockrell and Beck (1996)

for applications of AWE in other fields of engineering.

It can be also be seen however, that the vectors spanning the space in Equa-

tion:[4.20) and Equation:[4.21] are none other than the qth right and left Krylov

subspaces given by:

Kr
q(A, g) = span(g, Ag, ....Aq−1g) (4.23)

2At this point, it is worth mentioning that the required moment information can also be generated
by simply computing one set of 2q vectors: g,Ag, (A)2g, ...., (A)2q−1g, the 2q and then by
computing the inner products to form the moments: mi = LT . (Aig) for i = 0, . . . , 2q − 1.
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which is called the qth right Krylov subspace induced by A and g, and,

Kl
q(A

T , l̄) = span(l̄, AT l̄, ...., (AT )q−1l̄) (4.24)

which is called the qth left Krylov subspace induced by the matrix A and vector l̄.

The inner products of these two expressions lead to the same moments of the transfer

function as given in Equation:[4.22]. However, the vectors belonging to the Krylov

subspace quickly become linearly dependent and there is a rapid accumulation of

rounding errors, and hence these are not suitable in general as basis vectors. Instead,

a more suitable and stable set of basis vectors can be constructed using vectors v

and w, given by:

v1, v2, v3, ..., vq and w1, w2, w3, ..., wq (4.25)

where, v and w are column vectors stored in matrices [V ] and [W ], such that:

Kr
q(A, g) = span(v1, v2, v3, ..., vq) (4.26a)

and,

Kl
q(A

T , l̄) = span(w1, w2, w3, ..., wq) (4.26b)

Now, the direct computation of moments via Equation:[4.20), (4.21] can be

avoided, and the so-called modified moments can be computed as (Freund 2001):

wT
i vi and w

T
i Avi, i = 1, 2, .., q. (4.27)

It is worth mentioning that, the modified moments contain the same information as

the moments in Equation:[4.22], and in fact for each i = 1, 2, .., 2q − 1, the ith mo-

ment can be expressed as a suitable linear combination of equation Equation:[4.27].

Therefore, for the coupled structural-acoustic system, if the projection matrix [V ] is
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chosen from a Krylov subspace defined by:

Kq(Asa,gsa) = span(gsa,Asagsa, ....A
q−1
sa gsa) (4.28)

Kq(K
−1
sa Msa, K

−1
sa Fsa) = span(K−1

sa Fsa, K
−1
sa MsaK

−1
sa Fsa, .......K

−1
sa M

q−1
sa K−1

sa Fsa)

(4.29)

then, the projected reduced order model would match q moments of the higher di-

mensional, fully coupled, undamped structural-acoustic system.

It turns out that the two main approaches to generate vectors belonging to the

Krylov subspace are the Lanczos (Lanczos 1950) and the Arnoldi process (Arnoldi

1951). Mathematically speaking, both Lanczos and AWE are equivalent, but their

performance differ vastly when implemented on a computer. The classical Lanczos

process generates two sets of basis vectors which span the right and left Krylov sub-

spaces defined in Equation:[4.26a,4.26b] and are bi-orthogonal to match 2q moments

of the system matrices. However, the Lanczos process terminates prematurely due

to wT
i vi ≈ 0. To remedy this problem, a look-ahead Lanczos algorithm was pro-

posed (Freund and Gutknecht 1994). Another disadvantage of the Lanczos process

is that, although the original higher dimensional model is stable and passive, there

is no guarantee that the reduced order model generated by projecting the two sets

of bi-orthogonal vectors on the original system would generate a stable and passive

reduced order model. i.e The stability and passivity of the higher dimensional model

is not preserved. A partial Padé via Lanczos has been introduced to counter this

problem (Bai et al. 1997). Additionally, to match more than one specific output

state, a multiple band version of the Lanczos process is required. For this very rea-

son, in this thesis, we consider the use of the Arnoldi iteration to generate vectors

containing the low frequency moments of the fully coupled fluid-structure system

matrices.
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4.3. Undamped and Constantly Damped

Structural-Acoustic Systems

Second order fully coupled structural-acoustic systems, where damping is not in-

cluded in the analysis are called undamped systems. Systems with constant damp-

ing (irrespective of frequency) are called constantly damped systems. The goal of

this section is to describe the methodology to reduce such higher dimensional un-

damped and constantly damped systems. It is explained how to compute a reduced

order model from the higher dimensional model with superior solution accuracy and

computational efficiency properties.

4.3.1. The One-Sided Arnoldi Algorithm (OSA)

The two key properties essential for generating vectors belonging to the Krylov

subspace imply that (Antoulas 2003):

(a) The low frequency moments of the coupled system are matched without ex-

plicit computation of moments; and

(b) The procedure is implemented iteratively.

This ensures numerical stability while building up the Krylov subspace, and that an

orthogonal basis is constructed for the given subspace Kq(A, g). This is done using

the Arnoldi algorithm. Given a Krylov subspace , the Arnoldi algorithm finds a set

of vectors with norm one, that are orthogonal to each other, given by:

V T V = I (4.30)
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where, the columns of [V ] are the basis for the given Krylov sequence and I ∈ <q×q

is the identity matrix . Additionally,

V T A V = Hq (4.31)

Where [Hq] is a block upper Hessenberg matrix, and is an orthogonal projection

of [A] onto the Krylov subspace defined in Equation:[4.23]. Figure:[4.1] gives the

simplified single- input, single-output (SISO) version of the implemented Arnoldi

algorithm. In comparison with the Lanczos process, it can be observed that the

Arnoldi process produces only one sequence of vectors, which span the right Krylov

subspace in Equation:[4.23], and are orthonormal, as given by:

vT
i vj =

 1 if i = j

0 if i 6= j

 (4.32)

for all 1 ≤ i and j ≤ q. For the fully-coupled structural-acoustic problem described,

we have:

[A] = K−1
sa Msa, {g} = K−1

sa Fsa (4.33)

V TK−1
sa MsaV = Hq and V

TV = I (4.34)

Colspan(V ) = Kq(K
−1
sa Msa, K

−1
sa Fsa) (4.35)

The initial dimension of q is chosen such that the input-output behavior of the cou-

pled system is well represented. The discussion of the block version of the algorithm,

which is used to generate the Arnoldi vectors for a coupled structural-acoustic sys-

tem with multiple-inputs and multiple-outputs (MIMO) is quite involved, and the

reader is referred to (Freund 2000) for a detailed discussion. In short, the multiple

block version of the Arnoldi algorithm generates orthogonal vectors belonging to the
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block Krylov subspace3:

Kq(A1, g1, g2) = span(g1, g2, A1g1, A1g2...A
q−1g1, A

q−1g2) (4.36)

Returning to the SISO version of the algorithm as given in Figure:[4.1], it can be

seen that in each step, one vector orthogonal to all previously generated vectors is

constructed and normalized. The process is numerically very similar to the modi-

fied Gram-Schmidt orthogonalization with the following properties (Antoulas 2003;

Simoncini and Szyld 2007):

AVq = VqHq +Rq (4.37)

and,

Aig = ‖g‖ Vq H
i
q e1 for i = 0, 1, ...q − 1 (4.38)

where Rq is called the residue, generated by the Arnoldi process, and is given by:

Rq = hq+1,qvq+1e
T
q (4.39)

where, hq+1,q are the co-efficients of the upper Hessenberg matrix generated at each

iteration of the Arnoldi process and e1 and eq are the first and the qth standard unit

vectors in <N . The moments can now be computed as (Freund 2001; Freund 2000):

mi = LTAig = LT (K−1
sa Msa)

i(K−1
sa Fsa) (4.40)

Substituting Equation:[4.38] in Equation:[4.40], we have:

mi = LTAig = LT‖g‖VqH
i
qe1 = LTVqH

i
q‖g‖e1 (4.41)

3A block Krylov subspace with say m starting vectors can be considered as a union of m Krylov
subspaces defined for each starting vector (Salimbahrami 2005).
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where,

LTVq = LT
rsa, H

i
q = Ai

rsa and ‖g‖e1 = grsa (4.42)

where, the subscript rsa denotes the reduced structural-acoustic matrix. In this

case, since only q moments are matched, the approximation is said to be a Padé-

type approximant. In some sense, the Arnoldi process trades some optimality to

match only q moments of the coupled system matrices, but in turn generates a

guaranteed stable and passive reduced order model. i.e. the stability and passivity

of the original coupled higher dimensional model is preserved. Once the projection

matrix [V ] is found, [Hq] is discarded and a Galerkin projection
∏

= [V ][V ]T on

Equation:[4.9] generates a reduced order model in second order form, given by:

[−ω2[Mrsa] + [Krsa]]{z} = {Frsa} (4.43a)

yrsa(ω) = LT
rsaz(ω) (4.43b)

where,

[Mrsa] = V TMsaV ; [Krsa] = V TKsaV ; {Frsa} = V T{Fsa}; LT
rsa = LTV. (4.44)

It is now possible to define a reduced order transfer function, as follows:

Hrsa(s) = LT
rsa(s

2Mrsa +Krsa)
−1Frsa (4.45)

and the associated moments, given by:

mrsa
i = (−1)iLT

rsaA
i
rsagrsa (4.46)

87



4. Dimension Reduction via Krylov Subspace Techniques

where, mrsa
i are the moments of the reduced order model, and the space spanned by

vectors Ai
rsagrsa are the Krylov subspace vectors. It is worth mentioning that, due

to the iterative property of the algorithm, it is also possible to generate a reduced

order model of lower dimension than initially specified, by just discarding columns

in matrix [V ] and subsequently the rows and columns of the reduced matrices. This

property is later used to determine the number of vectors needed to accurately rep-

resent the system.

Input: Read coupled system matrices [Ksa], [Msa], {Fsa}, LT , q (Number

of vectors) and expansion point s, in this case s = (ωe + ωb)/2.

Output: q Arnoldi vectors belonging to the Krylov Subspace Kr
q(A, g).

[0]. Set v∗1 = g

[1]. ∗for i = 1→ q ∗do :

[1.1] Deflation Check: hi,i−1 = ‖v∗i ‖

*if, hi,i−1 = 0, the induced subspace is exhausted.

[1.2] Normalization: vi = v∗i /hi,i−1

[1.3] Generation of next vector: v∗i+1 = Avi

[1.4] Orthogonalization with old vectors ∗for j = 1→ i ∗do :

[1.4.1] hj,i = vT
j v

∗
i+1

[1.4.2] v∗i+1 = v∗i+1 − hj,ivj

[2]. Discard resulting Hq and project [Msa], [Ksa], Fsa, L
T onto [V ]

to obtain reduced system matrices [Mrsa], [Krsa], {Frsa}, LT
rsa

Figure 4.1.: Algorithm:1: Complete set-up for SISO/SICO Arnoldi (OSA) process

(Bai 2002; Freund 2000)
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4.3.2. The Two-Sided Arnoldi Algorithm (TSA)

The use of Arnoldi variants in reduced order modeling serve two distinct purposes:

(a) Increase the accuracy of the approximation by matching more moments;

and/or

(b) Generate candidate vectors containing minimum number of moments matched

thereby further reducing computational time.

In terms of coupled structural-acoustic modeling, it is well known that the accu-

racy of the secondary state variables (e.g. fluid velocity or cavity potential energy),

depends on the accuracy of the primary state variables e.g. fluid pressure (Desmet

and Vandepitte 2005). Therefore, numerical algorithms, which preserve a higher

degree of accuracy of the primary variables, whilst maintaining reasonable compu-

tational time would give NVH engineers more choices depending on the application.

As a result, a two-sided version of the Arnoldi algorithm , a multi-point Arnoldi

variant and its application to fully coupled structural acoustic modeling is discussed

in this section.

Since the moments of the transfer function forms the fundamental basis for order

reduction, an increase in the number of moments matched would also increase the

accuracy of the solution state variables. The accuracy of the one sided Arnoldi ap-

proximation discussed in the previous section can be further improved by matching

more than q moments of the higher dimensional coupled system. This process can

be achieved by computing two different sets of vectors, stored in column matrices

[V ] and [W ] and a subsequent Petrov-Galerkin projection on the higher dimensional

system leads to a reduced order model matching 2q moments of the coupled system,

there by guaranteeing a higher degree of accuracy compared to the one-sided meth-

ods. This process can also be seen as running two separate Arnoldi processes, one

for the controllability subspace, and the other for the observability subspace and
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then constructing an oblique projection from the two Arnoldi generated orthogonal

basis sets(Antoulas and Sorensen 2001).

Returning to the one sided Arnoldi algorithm, and considering the fact that

the columns of [V ] form the basis of the input Krylov subspace Kr
q(A, g), where,

A = [Ksa]
−1[Msa] and g = [Ksa]

−1{Fsa}, then q moments of the higher dimensional

system and the ROM match, and it can be shown that:

[V ] ([Krsa]−1[Mrsa])i+1 [Krsa]−1{Frsa} = ([Ksa]−1[Msa])i+1 [Ksa]−1{Fsa} (4.47)

for i = 1, ...q. Similarly, considering the fact that only the columns of [W ] form

the basis of the output Krylov subspace Kl
q(A

T , l̄), where, AT = [Ksa]
−T [Msa]

T and

l̄ = [Ksa]
−T{Lsa}, then q moments of the higher dimensional system and the ROM

match, and it can be shown that (Salimbahrami 2005):

[Lrsa]T ([Krsa]−1[Mrsa])i+1[Krsa]−1[W ]T = [Lsa]T ([Ksa]−1[Msa])i+1[Ksa]−1 (4.48)

for i = 1, ...q. Indeed, it can be seen that multiplying Equation:[4.48] by {Fsa} com-

pletes the proof for moment matching based only using the output Krylov subspace.

Common to these one sided methods, often, a second projection matrix is not cho-

sen, thus letting [V ] = [W ], which, under certain conditions preserve the stability

and passivity of the ROM.

Now, the columns of [V ] and [W ] can be computed to form the basis of input

Krylov subspace Kr
q(A, g), where, A = [Ksa]

−1[Msa] and g = [Ksa]
−1[Fsa] and the

output Krylov subspace Kl
q(A

T , l̄), where, AT = [Ksa]
−T [Msa]

T and l̄ = [Ksa]
−T{L},

such that each set of basis vectors thus computed satisfy:

V T V = I and W T W = I (4.49)
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a Petrov-Galerkin
∏

= [V ][W ]T projection (Antoulas 2003) leads to the following

ROM, in second order form:

[−ω2[Mrsa] + [Krsa]]{z} = {Frsa} (4.50a)

yrsa(ω) = LT
rsaz(ω) (4.50b)

where,

[Mrsa] = [W T ][Msa][V ]; [Krsa] = [W T ][Ksa][V ]; {Frsa} = [W T ]{Fsa};LT
rsa = [LT ][V ].

(4.51)

Subsequently, using Equations:[4.47,4.48], for i = 0, 1, . . . 2q−1, the reduced order

system moments match the higher dimensional system moments as follows (Grimme

1997; Salimbahrami 2005):

mrsa
2i = m2i = ( ([K−1

sa Msa]
T )iK−1

sa L )T . ( ([K−1
sa Msa]

T )iK−1
sa Fsa ) (4.52a)

mrsa
2i+1 = m2i+1 = ( ([K−1

sa Msa]
T )iK−1

sa L )T . ( ([K−1
sa Msa]

T )i+1K−1
sa Fsa ) (4.52b)

where, mrsa
2i and mrsa

2i+1 are the reduced order structural-acoustic coupled system mo-

ments.

The result in Equations:[4.52a,4.52b] can be generalized to match moments around

any expansion point s1 6= 0, such that the moments of the reduced order structural-

acoustic transfer function matches the moments of the higher dimensional structural

acoustic system as follows (Grimme 1997; Freund 2001; Salimbahrami 2005)::

m2i = mrsa
2i = ( ([(Krsa + s2

1Mrsa)
−1Mrsa]

T )i(Krsa + s2
1Mrsa)

−1Lrsa )T

. ( ([(Krsa + s2
1Mrsa)

−1Mrsa]
T )i(Krsa + s2

1Mrsa)
−1Frsa ) (4.53)
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m2i+1 = mrsa
2i+1 = ( ([(Krsa + s2

1Mrsa)
−1Mrsa]

T )i(Krsa + s2
1Mrsa)

−1Lrsa )T

. ( ([(Krsa +s2
1Mrsa)

−1Mrsa]
T )i+1(Krsa +s2

1Mrsa)
−1Frsa ) (4.54)

where s1 is any user specified expansion point around which the low frequency

structural-acoustic moments are desired to me matched. This means that a re-

duced order model could also be obtained which matches moments across different

points in the frequency domain simultaneously by constructing projecting vectors

belonging to subspaces:

Ks1
q ([Ksa + s2

1Msa]
−1[Msa], [Ksa + s2

1Msa]
−1{Fsa}) (4.55a)

and,

Ks2
q ([Ksa + s2

2Msa]
−T [Msa]

T , [Ksa + s2
2Msa]

−T{L}) (4.55b)

for s1 6= s2. Now, all the unknown 2q co-efficients in Equations:[4.16,4.17] are now

found, and the approximation is said to be a complete Padé approximant. Note that

beyond a set of single expansion points, J1 = s1, s2, with s1 = s2, it is also possible

to generate a structural-acoustic ROM with a multiple set of n expansion points

J1, J2 . . . Jn such that the frequency response and its derivatives are well approxi-

mated by matching the coupled system moments.

Once again, to avoid numerical problems associated with the Lanczos process, in

this work, the Arnoldi algorithm is applied twice to compute projection matrices

[V ] and [W ]. A complete two-sided Arnoldi SISO set up is shown in Figure:[4.2].

It is worth noting that the field-point/output scattering matrix [L]T explicitly par-

ticipates in the order reduction process (in the form of Kl
q(A

T , l̄) to yield [W ]), and

therefore the approximation is restricted to SISO, and does not automatically result

in a SICO approximation. The reader is reffered to Salimbahrami et al. (2005),

Salimbahrami (2005) for a discussion of the MIMO version of the two sided Arnoldi
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process. Shortly speaking, in the MIMO case, q
m

moments around s1 and q
p

mo-

ments around s2 match, where m and p are the number of inputs and the number

of outputs in the system respectively.

From the one-sided and two-sided Arnoldi processes shown in Figures:[4.1,4.2], it

can be seen that the coupled system matrices K−1
sa Msa, K

−1
sa Fsa are very important.

One of the main aims of performing model order reduction via implicit moment

matching is to increase computational efficiency, whilst matching the input to out-

put behavior for the coupled system. However, explicit computation of K−1
sa and

then using it in the Arnoldi process would lead to a loss of computational efficiency.

The remedy to this problem, is to compute the LU (lower, upper triangular) factor-

ization of Ksa once, and use this in every step of the iteration, thereby solving only

triangular linear equations in each iteration of the Arnoldi process.

More precisely speaking, for s = 0:

Ksa = Ld Ud (4.56)

and then, for each iteration of the Arnoldi process, which are given by:

g1 = K−1
sa Fsa and gi+1 = Agi = K−1

sa Msagi (4.57)

a back substitution is performed for solving Equation:[4.57] by using the following

three steps:

(a) First, Msa is multiplied by gi to give a = Msa gi.

(b) The linear equation Ld b = a is forward solved. This is fast, since L is lower

triangular. This means b = L−1
d a.

(c) The linear equations Ud c = b is solved. This is also fast, since U is upper
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[1]. Initialization: Read coupled structural-acoustic matrices, select appropriate

Input and Output Krylov Subspaces: Kr
q(A, g), Kl

q(A
T , L)

and expansion points Table:5.3.

[2]. Generate Projection Matrices: Use Arnoldi Algorithm (Figure:4.1) *for :

2.1 Kr
q(A, g): Apply A = [Ksa]

−1[Msa] and g = [Ksa]
−1{Fsa}

and compute [V ]

2.2 Kl
q(A

T , l̄): Apply AT = [Ksa]
−T [Msa]

T and l̄ = [Ksa]
−T{L}

and compute [W ]

[3]. Apply Projection: Use column matrices [V ] and [W ] and apply the Galerkin-

Petrov projection:
∏

= [V ] [W ]T to obtain structure preserving,

ROM matrices [Mrsa], [Krsa],{Frsa}, LT
rsa for reduced harmonic or

transient simulation.

Figure 4.2.: Algorithm:3: Complete set-up for SISO Two Sided Arnoldi (TSA) Pro-

cess (Grimme 1997; Salimbahrami et al. 2005).

triangular. Therefore, c = L−1
d U−1

d Msa gi = gi+1, which is the product that

is required.

Obviously, for an expansion point where s, s1, s2 . . . 6= 0, an inverse of [Ksa −

ω2Msa] is sought, where ω = (2×π×fexp) and fexp is the user defined low frequency

value around which the desired moments are to be matched. Therefore, an LU fac-

torization of [Ksa − ω2Msa] is computed and using these LU factors in the above

steps (a) to (c), leads to triangular linear equations being solved at each iteration

of the Arnoldi process. Note that a similar approach can be adopted to the com-

pute output Krylov subspace K−T
sa M

T
sa and K−T

sa L for the two-sided Arnoldi variant.

Throughout this thesis, it is assumed that the matrices are real or complex and that

the matrix pencil [−ω2Msa +Ksa] is invertible.
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4.4. Explicit Participation of Damping Matrix and

Linearly Damped Structural-Acoustic Systems

Second order fully coupled structural-acoustic systems, where structural damping is

included in the the form of frequency dependent (linearly varying) are called linearly

damped systems. Critical in the process of NVH refinement for trimmed structures,

acoustic damping is also often introduced at boundaries of the structural acoustic

model in order to represent noise absorbing materials (Marburg 2002a). In such

models, the explicit participation of the damping matrix [Csa] cannot be avoided,

and thus has to be taken into account in the solution formulations. In this chapter,

by introducing the second order damped model and thus the second-order input and

output Krylov subspaces, the desired moment matching properties are described.

On this course, transformation of second-order systems with an explicit participa-

tion of the damping matrix [Csa] to an equivalent first order form and the resulting

state space moment matching framework is also outlined. That is, it is described

how to compute a moment matching, reduced order model (from the underlying

higher dimensional model) by using two different dimension reduction formulations:

State space linearization followed by moment matching technique and the Second

order Krylov subspace based structure-preserving dimension reduction technique.

4.4.1. Two-Sided Second Order Arnoldi Algorithm (TS-SOAR)

For structural-acoustic system matrices involving an explicit participation of the

damping matrix [Csa], a reduced order model could be obtained by transforming the

second order system into an equivalent state-space form and applying known implicit

moment matching techniques via the Arnoldi process. However, such transformed

systems, although maintain the desired accuracy, suffer from two fundamental draw-

backs:
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(a) The cast coupled structural-acoustic, state-space system is twice in dimension

(2N) compared with the standard second order system (N). Thus, an initial

factorization (in this case, LU decomposition) of a system matrix of twice the

initial dimension is required.

(b) The projected reduced order system thus obtained is in state-space form. Thus,

the second order structure and the physical significance of the original problem

is initially lost in the reduced order system.

The above disadvantages can be countered using two different approaches:

(a) Back convert the reduced order structural-acoustic state space model to second

order model using transformation techniques (Salimbahrami 2005).

(b) Use of one-sided or the two-sided Second Order Arnoldi procedure (Bai and

Su 2005b; Bai and Su 2005a; Salimbahrami 2005) to generate orthogonal basis

for the given second order Krylov Subspace including the damping matrix.

The first approach, namely converting the reduced order structural-acoustic state

space model to second order model does not essentially alleviate the factorization of

the system matrix of dimension 2N, but can produce a ROM of second order model

thus restoring the physical significance of the problem. It is worth noting that this

back-conversion procedure can reduce computational efficiency. Additionally, if the

reduced order state space model is not stable and passive, the second order model

generated using this state-space system will not be stable or passive. Apparently,

for engineering design and control of such a systems, it is highly desirable to have a

reduced-order model preserving the second-order form and the essential properties,

such as stability and passivity (Bai et al. 2005). On the other hand, the SOAR

procedure, which was initially developed for solving quadratic eigen-value problems,

can also be effectively used for dimension reduction of second order dynamical sys-

tems arising in different fields of engineering (Bai et al. 2005; Lampe and Voss
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2005), for example, structural analysis or exterior uncoupled acoustic computations

arising from discretized FE/FE or FE/BE type models . Since the SOAR proce-

dure takes the damping matrix into account directly, no further back conversion is

required. Also, an initial factorization of the coupled system matrix of dimension N

is required as opposed to an LU factorization of system matrices of dimension 2N in

the state-space dimension reduction methods.

In this work, first, the second order Arnoldi procedure and its relationship to

the standard Krylov subspaces and state-space models are described. Next, the

SOAR process is extended using the output scattering matrix resulting in a two-

sided Arnoldi process (TS-SOAR). In Chapter:[6], various examples arising from in-

terior, fully coupled, linearly damped, structural-acoustic systems are reduced using

TS-SOAR and their numerical benefits demonstrated against a linearized coupled

system. At this point, it is worth noting that no known reduction techniques are able

to deal with coupled structural-acoustic systems incorporating frequency dependent

material damping. In such situations, where spatial damping is also present, a direct

inversion procedure is utilized to compute the desired states.

Starting off from the known Eulerian displacement - pressure (u/p) formulation

for the structural-acoustic model as a whole (Zienkiewicz and Newton 1969; Craggs

1971; Craggs 1973):

 Ms 0

Mfs Ma


︸ ︷︷ ︸

Msa

q̈(t)︷ ︸︸ ︷ ü

p̈

+

 Cs 0

0 Ca


︸ ︷︷ ︸

Csa

q̇(t)︷ ︸︸ ︷ u̇

ṗ

+

 Ks Kfs

0 Ka


︸ ︷︷ ︸

Ksa

q(t)︷ ︸︸ ︷ u

p

 = FMIsa µ(t)

(4.58a)
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and,

y(t) = LT

q(t)︷ ︸︸ ︷ u(t)

p(t)

 (4.58b)

For simplicity, using the definitions for the matrices and the states in the above

Equations:[4.58a,4.58b] , the coupled system can simply be written as:

[Msa] q̈(t) + [Csa] q̇(t) + [Ksa] q(t) = FMIsa µ(t) (4.59a)

y(t) = LT q(t) (4.59b)

Considering a SISO second order structural-acoustic system in the time domain,

it is possible to equivalently represent the coupled system as:

s2

 Ms 0

Mfs Ma


︸ ︷︷ ︸

Msa

q̃(s)︷ ︸︸ ︷ ũ

p̃

+ s

 Cs 0

0 Ca


︸ ︷︷ ︸

Csa

q̃(s)︷ ︸︸ ︷ ũ

p̃

+

 Ks Kfs

0 Ka


︸ ︷︷ ︸

Ksa

q̃(s)︷ ︸︸ ︷ ũ

p̃

 = fsa µ(s)

(4.60a)

and the output measurement vector given by,

y(s) = lT

q̃(s)︷ ︸︸ ︷ ũ

p̃

 (4.60b)

in the frequency domain using the Laplace transformation. Here, q̃(s) and hence

ũ, p̃, µ(s), y(s) are the Laplace transforms of q(t) and hence u, p, µ(t) and y(t) respec-

tively. fsa is the single-input structural-acoustic input distribution vector consisting

of fs and fa which denote the input distribution force(s) on the structural domain

and constrained acoustic pressure degrees of freedom (DOF’s) or purely acoustic

excitation, in the form of volume acceleration belonging to the fluid domain respec-
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tively. lT is the output scattering vector to restore a the desired state output, which

in this case the displacement or pressure corresponding to the structural and fluid

domain respectively.

Again, for simplicity and convenience, using the above definitions in Equa-

tions:[4.60a,4.60b],the coupled structural-acoustic system can be written using

Laplace transforms as:

s2 [Msa] q̃(s) + s [Csa] q̃(s) + [Ksa] q̃(s) = fsa µ(s) (4.61a)

y(s) = lT q̃(s) (4.61b)

Now, the input µ(s) and the output y(s) of Equations:[4.61a,4.61b] in the fre-

quency domain are related by the transfer function of the second order structural-

acoustic system, given by:

hsa(s) =
y(s)

µ(s)
(4.62a)

hsa(s) = lT ( s2 Msa + s Csa + Ksa)
−1 fsa (4.62b)

where, s = jω, with j =
√
−1 and ω ≥ 0. In this definition, we assume that Ksa is

nonsingular. Now, a formal power series expansion of Equation:[4.62b] is given by:

hsa(s) = m0 + m1s + m2s
2 + m3s

3 + . . . (4.63a)

hsa(s) =
∞∑

z=0

mz s
z (4.63b)

where, mz, for all z ≥ 0 are called the low-frequency moments of the second order,

fully coupled structural acoustic transfer function hsa(s). These low-frequency mo-

ments are the values and their subsequent derivatives of the transfer function hsa

at s = 0. The moment mz can in fact be expressed as an inner product between lT
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and gz (Bai et al. 2005):

mz = lTgz for all z ≥ 0 (4.64)

where, gz is a vector sequence, defined by the second order recurrence relationship,

which can be written for the coupled structural-acoustic case as follows:

g0 = K−1
sa fsa (4.65a)

g1 = −K−1
sa Csag0 (4.65b)

gz = −K−1
sa (Csagz−1 +Msagz−2) (4.65c)

for values of z = 2, 3, . . ..

The vector sequence defined above is called the input second order Krylov vector

sequence, which belongs to the input second order Krylov subspace, induced by two

matrices A,B and starting vector g0, written as:

Kri
q (A,B, g0) = span(g0, g1, g2, g3, . . . gq−1) (4.66)

where, A = −[Ksa]
−1[Csa], B = −[Ksa]

−1[Msa]. A similar feat of moment computa-

tion, can be achieved by also computing the following set of vectors in addition to

the vectors defined in Equations:[4.65a, 4.65b,4.65c]:

l0 = K−T
sa l (4.67a)

l1 = −K−T
sa C

T
sal0 (4.67b)

lz = −K−T
sa (CT

salz−1 +MT
salz−2) (4.67c)
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for values of z = 2, 3, . . .. The moments can now be expressed as an inner product

between fTsa and lz:

mz = fTsalz for all z ≥ 0 (4.68)

The vector sequence defined above is called the output second order Krylov vector

sequence, which belongs to the output second order Krylov subspace, induced by

the two matrices AT , BT and starting vector l0, written as:

Kle
q (AT , BT , l0) = span(l0, l1, l2, l3, . . . lq−1) (4.69)

where, AT = −[Ksa]
−T [Csa]

T , B = −[Ksa]
−T [Msa]

T .

It can now be observed that the vector sequence defined in Equations:[4.65a,4.65b,

4.65c,4.67a,4.67b, 4.67c] in fact form the moments of the second order, structural

acoustic transfer function. In order to show the moment matching parameters, let

us consider an equivalent system for Equations:[4.59a,4.59b] in first order form as

follows (see for e.g. Meirovitch (1980), Su and Craig (1991b), Freund (2001), Bai

(2002)):

Dsa
˙̄h(t) + Gsah̄ = b̂µ(t) (4.70a)

y(t) = l̂ T h̄(t) (4.70b)

where, h̄(t) = [q(t)T , q̇(t)T ]T and the block matrices, vectors defined as follows:

Dsa =

 Csa Msa

−I 0

, Gsa =

 Ksa 0

0 I

, b̂ =

 fsa

0

 and l̂ =

 l

0

.

Using the Laplace transforms, the transfer function of the system defined in Equa-

tions:[4.70a, 4.70a], and its associated power series expansion are written as follows:

hLin(s) = l̂ T ( s Dsa + Gsa )−1 b̂ (4.71a)
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hLin(s) = l̂ T ( I − s H)−1 r̂ (4.71b)

hLin(s) = m0 +m1s+m2s
2 +m3s

3 + . . . =
∞∑

z=0

mz (s)z (4.71c)

where, H = −(G−1
sa Dsa), r̂ = −G−1

sa b̂, mz are the so called low frequency moments

of the equivalent first order system. Note that the equivalent shifted low frequency

moments can also be formulated with any user specified value s0 and such that the

matrix pencil Gsa + s0 Dsa is invertible.

The transfer function thus defined in Equations:[4.71a, 4.71b] is in fact the equiv-

alent transfer function of the coupled higher dimensional structural-acoustic system

defined in Equations:[4.59a, 4.59b]. This can be shown by the inverse identity of the

2 × 2 block matrices Gsa and Dsa, given by (Bai and Su 2005a):

hLin(s) = l̂ T ( s Dsa + Gsa )−1 b̂

( s Dsa + Gsa)
−1 =

 s Csa + Ksa s Msa

−s I I


−1

(4.72a)

( s Dsa + Gsa)
−1 =

 ℵ(s)−1 ℵ(s)−1 s Msa I
−1

s ℵ(s)−1 ℵ(s)−1 ( s Csa + Ksa) I
−1

 (4.72b)

where, ℵ(s) = s2 Msa + s Csa + Ksa.

Subsequently, following from Equations:[4.71b, 4.71c], the equivalent low frequency

moments for the transfer function of the higher dimensional fully coupled structural-

acoustic system described by Equations: [4.59a,4.59b] can be written as:

mz = l̂ T (H)z r̂ = l̂ T (−G−1
sa Dsa)

zG−1
sa b̂ (4.73)
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Therefore, it is now natural to consider the input vector sequence, none other

than the standard, input Krylov subspace KLin
q (H, r̂), given by:

r̂,Hr̂,H2r̂,H3r̂ . . .Hn−1r̂ (4.74a)

KLin
n (H, r̂) = span(r̂,Hr̂,H2r̂,H3r̂ . . .Hn−1r̂) (4.74b)

which would generate the desired moment information mz = l̂T (H)z r̂. Alter-

natively, one could also consider the output vector sequence, non other than the

standard, output Krylov subspace KLin
q (HT , l̂), given by:

l̂, (HT )l̂, (HT )2l̂, (HT )3l̂ . . . (HT )n−1l̂ (4.75a)

KLin
n (HT , l̂) = span(l̂, (HT )l̂, (HT )2l̂, (HT )3l̂ . . . (HT )n−1l̂) (4.75b)

and then compute the inner products in order to define the equivalent low frequency

moments as follows:

m2z = ( (HT )z l̂ )T . ( (HT )z r̂ ) and m2z+1 = ( (HT )z l̂ )T . ( (HT )z+1r̂ ) (4.76)

In particular, it is worth noting that:

H = (−G−1
sa Dsa) , HT = (DT

sa . (−G−T
sa ))

H =

 −K−1
sa Csa −K−1

sa Msa

I 0

 =

 A B

I 0

 , r̂ =

 K−1
sa fsa

0

 (4.77a)
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and,

HT =

 −K−T
sa CT

sa −K−T
sa MT

sa

I 0

 =

 AT BT

I 0

 , l̂ =

 K−1
sa l

0


(4.77b)

One can now observe that the input and the output second order Krylov subspaces,

span the same space as the upper half of the standard input and output Krylov

subspaces. Precisely speaking, the moments can now be defined as follows:

mz = l̂ T (H)z r̂ = l̂ T (−G−1
sa Dsa)

zG−1
sa b̂ (4.78a)

= { ( (HT )z l̂ )T . ( (HT )z r̂ ), ( (HT )z l̂ )T . ( (HT )z+1r̂ ) } (4.78b)

= lTgz (4.78c)

= fTsalz (4.78d)

To illustrate the moment matching properties of Equations:[4.78a−→ 4.78d], let

us consider an example.

Example:4.1: Consider the following 3× 3 SISO system as given below4:

[A] =


−0.3933 0.0061 0.7416

0.0624 0.8171 −0.2038

0.0438 −0.9152 0.2342

 ,

[B] =


0.8985 −0.5057 0.0222

−0.7878 0.0610 0.8698

−0.1830 0.1353 0.6141

 , fsa =


20

0

0

 , l =


1

0

0



4The matrices for this example were generated using the randn command in MATLAB.
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The corresponding linearized system is given by (Equation: 4.77a):

[H] =



−0.3933 0.0061 0.7416 0.8985 −0.5057 0.0222

0.0624 0.8171 −0.2038 −0.7878 0.0610 0.8698

0.0438 −0.9152 0.2342 −0.1830 0.1353 0.6141

1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0



b̂ =



20

0

0

0

0

0



and l̂ =



1

0

0

0

0

0



The moments can now be defined using both the original system and its equivalent

linearized system. Table:[4.1] shows the first five moment values from m0 −→ m4

for both systems. It can be observed that the computed moments are exactly the

same and is irrespective of the system representation.

The use of projection techniques for dimension reduction, similar to the projection

matrix V encountered in the standard Krylov subspaces, seek an orthogonal projec-

tion onto the induced right subspace Kri
q (A,B, g0), to construct an approximation

such that:

q(t) =

 u(t)

p(t)

 = Vsaz̆(t) + εsa (4.79)
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Moments Equation:[4.78a] Equation:[4.78b] Equation:[4.78c] Equation:[4.78d]

m0 20 20 20 20

m1 -7.8660 -7.8660 -7.8660 -7.8660

m2 21.7210 21.7210 21.7210 21.7210

m3 -19.9807 -19.9807 -19.9807 -19.9807

m4 46.9311 46.9311 46.9311 46.9311

Table 4.1.: Computation of moment values (Example:4.1) for the original and equiv-

alent linearized system

where, z̆(t) are the generalized co-ordinates and εsa is the small approximation

error introduced due to the projection to generalized co-ordinates. Indeed, from

Equations:[4.90], one can observe that the vector sequence gz, of length N which is

used to generate the projection matrix Vsa, is related to the standard Krylov vectors

sequence of length 2N as follows:

 gz

gz−1

 = (H)z r̂ (4.80)

As mentioned before, such a projection to generalized co-ordinates is often re-

ferred to as change of state co-ordinates.

However, for dimension reduction in practice, one is often interested in approxi-

mating the higher dimensional coupled system at s0 6= 0 or possibly even multiple

values of s0 6= 0 (leading to second order, rational Krylov methods) . In such a case,
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the transfer function of the coupled system can be re-written as:

hsa(s) = lT ( s2 Msa + s Csa + Ksa)
−1 fsa

hsa(s) = lT ( (s− s0)
2 Msa + (s− s0) C̃sa + K̃sa)

−1 fsa (4.81)

where, the block fully coupled, structural-acoustic matrices [K̃sa] and [C̃sa] are de-

fined as:

[K̃sa] = s2
0Msa + s0Csa +Ksa (4.82a)

[C̃sa] = 2s0Msa + Csa (4.82b)

It can be seen that [C̃sa] is simply the first derivative of [K̃sa]. Here, s0 can be any

user specified value, such that that matrix [K̃sa] is nonsingular. Now, the low fre-

quency moments, and thus the recurrence scheme specified in Equations:[4.65a,4.65b,

4.65c,4.67a,4.67b, 4.67c] are modified as follows:

hsa(s) =
∞∑

z=0

m̃z (s− s0)
z (4.83)

where, m̃z, for all z ≥ 0 are called the shifted low-frequency moments of the second

order, fully coupled structural acoustic system defined in Equations:[4.60a,4.60b].

The shifted moments can be computed as follows:

m̃z = lT g̃z, m̃z = fTsal̃z for all z ≥ 0 (4.84)

with the following recurrence schemes for g̃z and l̃z:

g̃0 = K̃−1
sa fsa (4.85a)

g̃1 = −K̃−1
sa C̃sag̃0 (4.85b)

g̃z = −K̃−1
sa (C̃sag̃z−1 +Msag̃z−2) (4.85c)
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for values of z = 2, 3, . . ..

l̃0 = K̃−T
sa l (4.86a)

l̃1 = −K̃−T
sa C̃

T
sal̃0 (4.86b)

l̃z = −K̃−T
sa (C̃T

sal̃z−1 +MT
sal̃z−2) (4.86c)

for values of z = 2, 3, . . ..

The shifted moments defined in Equation:[4.84] thus serve as an important obser-

vation to define the goal for dimension reduction.

Since any form of explicit moment matching is known to suffer with numerical

difficulties, in this work, implicit moment matching is performed via a two-sided,

second order Arnoldi based direct projection technique. For this purpose, consider

the orthonormal projection matrices, Vsa and Wsa for Galerkin or Petrov-Galerkin

type projections, which span the input and output Krylov subspaces defined in

Equations:[4.66, 4.69], i.e:

Kri
q (A,B, g0) = span(Vsa) and V T

saVsa = I (4.87a)

Kle
q (A,B, l0) = span(Wsa) and W T

saWsa = I (4.87b)

By setting [A], [B], it is now possible to extend the standard Arnoldi iterations

(Figures:4.1,4.2) to find a basis for the given Second Order Krylov Subspace. The

resulting one sided SOAR procedure (which in this work is utilized to compute TS-

SOAR column matrices i.e. both Vsa, Wsa)), was first proposed by Su and Craig

(1991b) and later improved and extended by Bai et al. (2005), Bai and Su (2005a),

Salimbahrami (2005). The iterative process given below finds two sets of orthonor-

mal basis vectors for the induced input and output subspace, i.e. V T
saVsa = I and

W T
saWsa = I , and therefore the columns of the matrix Vsa and Wsa form a basis for
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the induced subspace. For simplicity, it SISO is assumed i.e. kst, l have one entry

each. In some sense, the parameter kst = 1 is utilized to describe the process in a

more efficient manner.

Comparing TS-SOAR to the TSA, it can be observed that the TS-SOAR proce-

dure is quite similar with modifications to the orthogonalization and normalization

steps to enforce orthonormality of the vectors stored in column matrices of Vsa and

Wsa. The reader is made aware that there are two potential situations in the SOAR

process (Bai et al. 2005; Bai and Su 2005a): deflation and complete breakdown. The

former results due to the fact that the vector v̂i for i = 0 −→ j−1 which is computed

in Step:1.2: becomes linearly dependent but the double length vector sequence de-

fined by [v̂T
i , v̂

T
i−1]

T for i = 0 −→ j − 1 is linearly independent. In such a situation,

deflation occurs. As shown in the SOAR process, in this case, one temporarily sets

v̄i = 0, which is then deleted at the end. In the case when v̂i, p̂i are both linearly

dependent (and so are v̂i, [v̂T
i , v̂

T
i−1]

T for i = 0 −→ j−1), then one sets v̂i = 0, pi = 0

both of which are deleted at the end of the process. Considering a SISO system,

this defines complete breakdown. For real life applications, it is however not possible

to check for zero vectors in finite precision arithmetic. Instead, the norm of the

vectors are computed and checked against a very small number. i.e ‖v̂i‖2 < ϕ and

‖p̂i‖2 < ϕ, where ϕ is the small number. Throughout this work the value of ϕ is set

to 1.0E-12. It is worth pointing out that at the breakdown of SOAR, it is possible

to prove that the transfer function of the ordinal and the reduced order model are

identical (Bai and Su 2005a).

Upon completion of the TS-SOAR process, a reduced order model can now be de-

fined by applying the Petrov-Galerkin projection on the coupled higher dimensional
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4. Dimension Reduction via Krylov Subspace Techniques

Input: Read coupled system Matrices [Ksa], [Msa], [Csa], {fsa}, lT , q (Number

of vectors) and expansion point s0, in this case s0 = (ωe + ωb)/2; or ωe.

Form and Set: [K̃sa] = s2
0Msa + s0Csa +Ksa and [C̃sa] = 2s0Msa + Csa.

Output: q Arnoldi vectors belonging to the Second order Krylov Subspace.

Kri
q (A,B, g0). In this case, Kr

q(−K̃−1
sa C̃sa,−K̃−1

sa Msa,K̃
−1
sa fsa).

[0]. Delete all linearly dependent starting vectors (if multiple) to obtain kst

linearly independent starting vectors. Set v̄1 = g0

‖g0‖ and p1 = 0 for p1 ∈ <n.

[1]. ∗for i = 2, 3, ..→ q ∗do :

[1.1] Generate next vector: ∗if i ≤ kst, set v̂i (below) as the ith starting

vector and p̂i = 0. ∗else, set v̂i = Av̄i−kst +Bpi−kst and p̂i = v̄i−kst

[1.2] Orthogonalization: ∗for j = 1→ i - 1, ∗do :

h = v̂T
i v̄j, v̂i = v̂i − hv̄j, p̂i = p̂i − hpj

[1.3] Normalization and Deflation check: ∗if v̂i 6= 0 (normal case), then,

∗do : v̄i = v̂i

‖v̂i‖ , pi = p̂i

‖v̂i‖ .

∗else if p̂i 6= 0, v̄i = 0.

∗else, kst = kst − 1. Go to step: [1.1]. ∗if kst = 0, delete zero columns.

[1.4] Increase i and go to step: [1.1].

[2]. Delete zero columns from deflation, discard resulting Hq and project higher

dimensional system [Msa], [Ksa], [Csa], {fsa}, lT onto [Vsa] to obtain reduced

system matrices [Mrsa], [Krsa], [Crsa], {frsa}, lTrsa for harmonic simulation.

Figure 4.3.: Algorithm:4: Set-up for SISO/SICO Second Order Arnoldi (SOAR) Pro-

cess with multiple starting vectors (Bai et al. 2005; Bai and Su 2005a;

Bai and Su 2005b).
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4. Dimension Reduction via Krylov Subspace Techniques

[1]. Initialization: Read coupled structural-acoustic matrices, select appropriate

Input and Output Krylov Subspaces: Kr
q(A,B, g0), Kl

q(A
T , BT , l0)

and expansion points. Form and Set: [K̃sa], [C̃sa] as in Figure:4.3.

[2]. Generate Projection Matrices: Use the SOAR Algorithm (Figure:4.3) *do:

[2.1] Kri
q (A,B, g0): Apply A = [−K̃−1

sa C̃sa], B = [−K̃−1
sa Msa]

and g0 = [K̃−1
sa ]{fsa} to compute [V ].

[2.2] Kle
q (AT , BT , l0): Apply AT = [−K̃−T

sa ] [C̃T
sa], B

T = [−K̃−T
sa ] [MT

sa]

and l0 = [K̃−T
sa ]{l} to compute [W ].

[3]. Apply Projection: Use generated column matrices: [Vsa] and [Wsa] and apply

the Galerkin-Petrov projection:
∏

= [Vsa] [Wsa]
T to obtain the

structure preserving ROM matrices: [Mrsa], [Crsa], [Krsa],{frsa}

and lTrsafor reduced harmonic or transient simulation.

Figure 4.4.: Algorithm:5: Higher-level, complete set-up for SISO Two Sided Second

Order Arnoldi (TS-SOAR) Process (Salimbahrami 2005).

system matrices as follows:

[Mrsa] = [W T
sa] [Msa] [Vsa], [Krsa] = [W T

sa] [Ksa] [Vsa] (4.88a)

[Crsa] = [W T
sa] [Csa] [Vsa], frsa = [W T

sa] fsa, lTrsa = lT [Vsa] (4.88b)

[Mrsa] z̈(t) + [Crsa] ż(t) + [Krsa] z(t) = frsa µ(t) (4.88c)

yrsa(t) = lTrsaz(t) (4.88d)

where, rsa denote the reduced structural-acoustic matrices. It is worth noting that

the goal of dimension reduction i.e. reduction of the system matrices fromN×N −→

q × q is now achieved, and the system described in Equations:[4.88c,4.88d] is now

ready for reduced harmonic or transient simulation. Continuing from the transfer

function description about any specified expansion point s0, a reduced order transfer
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4. Dimension Reduction via Krylov Subspace Techniques

function can now be defined as (Bai et al. 2005):

hrsa(s) = lTrsa ( (s− s0)
2 Mrsa + (s− s0) C̃rsa + K̃rsa)

−1 frsa (4.89)

where, the shifted reduced order matrices are defined as follows: [Mrsa] =

[W T
sa] [Msa] [Vsa], [K̃rsa] = [W T

sa] [K̃sa] [Vsa], [C̃rsa] = [W T
sa] [C̃sa] [Vsa].

Indeed, it can be seen that by carrying out simple manipulations on Equa-

tion:[4.89], the reduced transfer function can be written as:

hrsa(s) = lTrsa ( (s− s0)
2 Mrsa + (s− s0) C̃rsa + K̃rsa)

−1 frsa

= lTrsa ( (s− s0)
2 Mrsa + (s− s0) [2s0Mrsa + Crsa]

+ [s2
0Mrsa + s0Crsa +Krsa] )−1 frsa

= lTrsa ( [ s2Mrsa + s2
0Mrsa − 2ss0Mrsa ]

+ [2ss0Mrsa + sCrsa − 2s2
0Mrsa − s0Crsa]

+ [s2
0Mrsa + s0Crsa +Krsa] )−1 frsa

Following from the above expanded equations and performing the required algebraic

cancelations, it is now possible to define the reduced transfer function as follows:

hrsa(s) = lTrsa ( s2 Mrsa + s Crsa + Krsa)
−1 frsa (4.90)

with the same definitions of the reduced coupled structural-acoustic system matrices

and vectors as in Equations: [4.88a,4.88b]. Subsequently, the first q low frequency

shifted moments5 about any given expansion point s0 of the original (hsa) and re-

duced order transfer function (hrsa) are the same. More compactly, this can be

5Note that there are z and 2z moments defined in the case of explicit damping matrix participa-
tion. For consistency with the Arnoldi processes described in this work, a Padé approximant
of qth order is assumed for the rest of the discussion.
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4. Dimension Reduction via Krylov Subspace Techniques

written as:

m̃sa
z = m̃rsa

z for all z ≥ 0 (4.91)

Recall that a Padé approximant, so called, is that rational function (of a specified

order) whose power series expansion agrees with a given power series to the highest

possible order. This implies that hrsa is a qth order Padé approximation of hsa about

any given expansion point s0.

Further, it can be observed from the above reduction process, that although the

shifted matrix triple (Msa, C̃sa, K̃sa) is used to generate the projection matrices

Vsa,Wsa, the reduced order model is computed by projection onto the original higher

dimensional system matrices (Msa, Csa, Ksa). The use of such a modified system

matrices in dimension reduction is called structure preserving dimension reduction,

since it essentially preserves the original second order structure of the problem.

In terms of computational flops and memory, the cost of carrying out the stan-

dard SOAR process (assuming no deflation), is (3/2)Nq(q + 4/3) with a memory

requirement of (2 + q)N (Bai et al. 2005). The cost for a subsequent TS-SOAR

process is dominated by the formation and the initial LU factorization of K̃sa and

the explicit computation of C̃sa. The remaining costs are for the orthogonalization

of the old vector sets generated. It is worth pointing out that K̃−T
sa can simply be

computed using the original LU factors of K̃sa. Precisely speaking, it is possible to

exploit the matrix relationship:

LT
dU

T
d = ( s2

0 Msa + s0 Csa + Ksa)
T (4.92)

and then perform a subsequent forward and backward solves to compute the re-

quired K̃−T
sa l.
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4. Dimension Reduction via Krylov Subspace Techniques

In comparison to the linearization approach, one can observe that the cost of

forming K̃sa and C̃sa is an additional overhead. However, since the linearization ap-

proach essentially doubles the dimension of the system, an initial LU factorization

is carried out at an increased cost and memory (this is approximately a factor of

8). In some situations, this factorization might not be even possible on a standard

stand alone computer. More appealing to the NVH community, is the fact that the

reduced order model is in second order form - this preserves the original structure of

the problem and outweighs the small additional cost of forming the required system

matrices. In fact, in Chapter:[5], it will be numerically demonstrated that this cost

is indeed very small.

Shortly speaking, this new method for fully coupled, interior, structural-acoustic

systems is computationally efficient, preserves the second order structure of the

underlying original system, does not sacrifice any information from the damping

formulation, uses both input and output subspaces (if needed), and is valid over a

wide range of low frequencies.
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4. Dimension Reduction via Krylov Subspace Techniques

4.5. Error Quantities

In this section, a method to compute the error estimates, general to Arnoldi or

Lanczos based reduced order modeling approaches and thus the convergence prop-

erties of the model is presented. The convergence models are similar to the method

mentioned in (Bechtold et al. 2005b). The method is general, in the sense that any

Arnoldi variant described in the previous sections, can be utilized and the desired

error/convergence parameters computed. First, a local error for individual states is

defined as:

˘̄hrsa(s) =
|H(s)−Hrsa(s)|

|H(s)|
(4.93)

for all values of s used for the higher dimensional and the ROM6. In the first con-

vergence model, a straightforward true error and relative error between two models

for all states considered for the ROM is computed as follows:

ϑrsa(s) =
‖ H(s)−Hrsa(s) ‖

‖ H(s) ‖
(4.94a)

for any user-defined value of s and any number of desired outputs, for the higher

dimensional and the ROM. Here, H(s) corresponds to the original transfer function,

given by, H(s) = LT (s2Msa + Ksa)
−1Fsa where, the definitions of Msa, Ksa and

Fsa remain the same as in Equation:[4.11] and Hrsa(s) is the reduced order transfer

function. Further, a relative error between two successive reduced order models q

and q + 1 can be defined as:

ϑ̂rsa(s) =
‖ Hrsa(s)−Hrsa+1(s) ‖

‖ Hrsa(s) ‖
(4.94b)

for any user-defined value of s and any number of desired outputs, for the higher

dimensional and the ROM.

6Throughout this thesis, the absolute values for the numerator and denominator are utilized for
the error computations.
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Subspaces: Numerical Test Cases.

In order to illustrate the applicability and suitability of the reduction methods pro-

posed in the previous section of this dissertation, in this chapter, the proposed meth-

ods are applied to different fully coupled structural-acoustic systems. Four different

methods form the main focus of this chapter: One Sided Arnoldi (OSA), Two-sided

(and multi-point) Arnoldi (TSA, MP-TSA), Two-sided Second order Arnoldi (TS-

SOAR). A description of the test cases to be considered in this section is shown

in Table:[5.1]. Both air and water are considered as fluid medium in order to test

the accuracy and computational efficiency for both weakly and strongly coupled

problems. A short description, comparison methodologies and the induced Arnoldi

variants for the test cases is shown in Table:[5.1].

The error estimates and convergence models described in Chapter:[4], Sec-

tion:[4.5], are used to compute the true (local in frequency domain) and relative

error to evaluate a stopping criterion for the fully coupled models in the frequency

domain. The computational times required for the test cases are calculated using

MATLAB. Unfortunately, it was not possible to run all simulations for the test cases

on the same machine. Indeed, four different machines (with different specifications)

have been used throughout the dissertation. The bench timings for the machines

generated from MATLAB for the four machines are shown in Appendix:(A).
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5. Direct Projection via Krylov Subspaces: Numerical Test Cases.

5.1. Test Case: 1: 2D ABAQUS Benchmark Model:

The Acid-Test.

The model is a semicircular shell and fluid mesh of radius 2.286 m. A point load

on the symmetry axis of magnitude 1.0 N is applied to the shell. The shells are

0.0254 m in thickness and have a Young’s modulus of 206.8 GPa, a Poisson’s ratio

of 0.3, and a mass density,ρs, of 7800.0 kg/m3. The acoustic fluid has a density,ρf ,

of 1000 kg/m3 and a bulk modulus,κf , of 2.25 GPa. The response of the coupled

system is calculated for frequencies ranging from 100 to 1000Hz in 1Hz increments.

The driving point displacement amplitude and the fluid pressure at the center of

the acoustic domain are state variables of interest. A description of the problem can

also be found in the ABAQUS Benchmark manual (ABAQUS 2005; Stepanishen

and Cox 2000). It is worth mentioning that the solutions presented in Stepanishen

and Cox (2000) compares analytical solutions with coupled and uncoupled modal

expansion solutions obtained utilizing ABAQUS implemented modal type reduction

procedures - Coupled Lanczos (CL) procedure, and the popular automated compo-

nent mode method: Automated Multi-Level Substructuring (AMLS)1. It has been

demonstrated that in comparison to the analytical results, the ABAQUS modal

solutions (CL and AMLS) are in good agreement over the entire frequency range

(100-1000Hz).

This undamped benchmark problem is known as the acid-test within the

structural-acoustic community. The point load is a more challenging problem phys-

ically in the modal projection, because the single entry in the FE load vector maps

to a full vector in the reduced problem, but this representation is truncated at the

number of vectors. Analogy is to the Fourier transformation of a Dirac distribution

(Cipolla 2006). Also, the absence of damping makes the errors more apparent, be-

1Currently, the finite element software ABAQUS, relies on AMLS for significant speed-up of fully
coupled, structural-acoustic problems.
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5. Direct Projection via Krylov Subspaces: Numerical Test Cases.

cause the response is not smoothed. Therefore, the undamped model is considered

as the first test case to illustrate the accuracy, efficiency and convergence properties

of Krylov subspace via Arnoldi based direct projection techniques. An extension of

the undamped test case is then made to frequency dependent structural damping.

This leads to an explicit participation of [Csa]. For the test case, three Arnoldi

variants form the main focus: One Sided Arnoldi (OSA), Two-Sided Arnoldi (TSA)

and Two-Sided Second order Arnoldi (TS-SOAR) process.

As as first step to solve the problem using Krylov Subspace based projection

techniques, the described model is modelled using the ANSYS FE package (AN-

SYS 2005). The distribution of the elements in the coupled FE model is as follows:

400 2D, 4 noded, 2 DOF (UX,UY) axis-symmetric structural elements (PLANE42),

21107 2D, 4 noded, 1 DOF (Pressure) axis-symmetric fluid elements not in contact

with the structure (FLUID29) and 400 2D, 4 noded, 3 DOF (UX, UY, Pressure)

structural-acoustic interface elements in contact with the structure (FLUID29). For

a detailed description of element formulations, the reader is referred to (ANSYS

2005). The structural and coupled FE mesh are shown in Figures:[5.1,5.2]. First,

the driving point displacement obtained using the ANSYS Direct frequency sweep

technique is compared with results presented in ABAQUS (2005), Stepanishen and

Cox (2000). The comparison of the transfer functions is shown in Figure:[5.7]. It can

be observed that there is a very good match between ANSYS direct prediction and

the analytical solution for the driving point displacement amplitude. This means

that, the ANSYS solution obtained by Direct inversion technique is also in very

good agreement with ABAQUS implemented modal type reduction procedures (CL

and AMLS). Therefore, the ANSYS fully coupled model and the solution is now

considered validated and will be used as a reference solution for the remainder of

the thesis.
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5. Direct Projection via Krylov Subspaces: Numerical Test Cases.

Figure 5.1.: Test Case No. 1: Benchmark structural model.

Figure 5.2.: Test Case No. 1: Benchmark coupled structural-acoustic model.

120



5. Direct Projection via Krylov Subspaces: Numerical Test Cases.

For the Arnoldi based ROM approach, 100 vectors are used for the Galerkin or

Galerkin-Petrov projection. The expansion points along with the input and output

Krylov Subspaces considered for the test case is shown in Table:[5.3]. For the OSA

method, the expansion point, fexp, is kept constant at 750Hz whilst specifying the

driving point displacement and nodal pressure at the centre of the fluid domain as

outputs for the coupled analysis. Since, the TSA method takes the output measure-

ment vector (for SISO) in the order reduction process, we specify the nodal driving

point displacement as the output for analysis involving TSA methods.

Table 5.2.: Structural Damping values and Expansion point for TS-SOAR for Acid-

Test, benchmark problem.

Damped Test Cases Damping Value Expansion Point

Low Damping [Tld] βm
j =5.0E-06 900Hz / 900Hz

Medium Damping [Tmd] βm
j =1.0E-05 1000Hz / 1000Hz

High Damping [Thd] βm
j =2.0E-05 750Hz / 750Hz

For the frequency dependent structural damping case, three different values of

βm
j are considered for the analysis. This is shown in Table:[5.2]. These models re-

sults in an explicit participation of [Csa] and the direct-inversion technique cannot

be avoided. For dimension reduction, the TS-SOAR process is chosen for the re-

sulting coupled higher dimensional system. The aim of using different expansion

points for each of the damped test cases is to observe the effects of moment match-

ing and its resulting accuracy at different frequencies for different damping values.

Theoretically speaking, since the frequency sweep is requested for a wide frequency

range (101Hz to 1000Hz at 1Hz increments), the expansion points are chosen in the

higher frequency range. An initial comparison between the driving point displace-

ments for undamped and frequency dependent, linearly damped model is shown in
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Figure 5.3.: Test Case No. 1: Structural-acoustic damping matrix sparsity plot for
Tld damping model.

Figure:[5.6]. It can be observed that the amplitude of displacements decrease with

increasing frequency. This is as expected, since the frequency dependent damping

specified, increases linearly with increasing frequency.

The sparsity plot of the stiffness and the mass matrix obtained by reading the

matrices using MATLAB (Matlab 2006) for coupled structural-acoustic problem is

shown in Figures:[5.4,5.5]2. Here nz represents the number of non-zero elements

present in the matrix. The sparsity plot for the coupled higher dimensional damp-

ing matrix is shown in Figure:[5.3] for Tld damping model. It can also be clearly

observed that the number of entries in the damping matrix is much lower than the

mass matrix or the stiffness matrix.

2In MATLAB, the command spy(X) plots the sparsity pattern of the given matrix X.

122



5. Direct Projection via Krylov Subspaces: Numerical Test Cases.

Figure 5.4.: Test Case No. 1: Coupled structural-acoustic stiffness matrix sparsity
plot.

Figure 5.5.: Test Case No. 1: Coupled structural-acoustic mass matrix sparsity plot.
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Figure 5.6.: Test Case No. 1: A comparison between ANSYS predicted driving point
displacements for damped models described in Table:(5.2).

5.1.1. Computational Results and Discussion

The receptance transfer function (normal structural displacement over input struc-

tural force) and the acoustic transfer function (cavity pressure over input structural

force) at the centre of the fluid domain predicted by ANSYS Direct and One-Sided

Arnoldi projection are shown in Figures:[5.8,5.9]3. A comparison of local error quan-

tities defined by Equation:[4.93], for the OSA and TSA projection for nodal pressure

and driving point displacement amplitudes are shown in Figures:[5.10,5.11]. Fur-

ther, the respective error quantities for models expanded using different expansion

points is shown in Figure:[5.12]. For the convergence models presented in Equa-

tions:[4.94a,4.94b], the start frequency (101Hz) and end frequency (1000Hz) are

considered as inputs. Figures:[5.13,5.14] show the convergence pattern for ROMs

via OSA and TSA based projection framework.

3Throughout this thesis, the displacement (receptance) and pressure (noise) transfer functions
(NTFs) are illustrated using log to the base 10.
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The computational times required to solve the coupled model via ANSYS direct

method for all defined substeps and by employing order reduction via the Arnoldi

process is shown in Table:[5.4]. The generation of the reduced order model (ROM),

consisted of four different steps. First, the higher dimensional model was generated

in ANSYS, and an ANSYS Static solution , combined with partial solve (ANSYS

2005) is issued to write out the relevant structural-acoustic database files. Next,

an open source C++ code dumpmatrices (Rudnyi and Korvink 2006) was used to

extract the higher dimensional mass and stiffness matrices. The higher dimensional

model was then read using Mathematica (Wolfram 2003), and order reduction and

projection performed via the Arnoldi process. The harmonic analysis and the error

parameter computations (and therefore the convergence models) of the reduced sys-

tem was performed using LU decomposition in Mathematica/Matlab (Matlab 2006)

environment. The split computational times are shown in Table:[5.5].

The undamped computations described in this thesis were performed on a Win-

dows XP, Pentium 4, 3GHz, 2GB RAM machine [Me1]. The linearly damped com-

putations described in this thesis were performed on a Windows XP, Pentium 4,

3.2GHz, 2GB RAM machine [Me2]. Note that the computational times in the ta-

bles may slightly change according to the condition of the computer and hardware

parameters such as the reading and writing rates of the hard disk drives and the

number of processes running during the analysis.The bench4 calculation for all three

machines [Me1, Me2, Me3] used for this test case are shown in Table:[A.1], Ap-

pendix:(A).

The computational times for the projections and forced response analysis via

AMLS and CL algorithms performed using [Me3] are shown in Table:[5.6]. It can be

4For comparison of performance between different machines, the thesis makes use of the MATLAB
command bench (Y) which solves a stack of standard problems (such as LU, FFT, Sparse) Y
times to determine the machine speed. Throughout out this work, bench(10) is used - values
of which are later averaged.
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observed that if one ignores the time required for matrix extraction and model con-

struction from the OSA computation (which can be easily achieved in a commercial

FE environment), the time required for the OSA computation is in fact smaller (82

s) than the AMLS method (131 s)5. It can also be seen that the Two-sided methods

are also competitive in terms of computational time when compared to the AMLS

method. The efficiency of the AMLS method seems to be nullified by the extrac-

tion of extremely higher number of acoustic modes (up to 4500Hz. - 58 structural

and 110 fluid modes) to achieve acceptable solution state convergence. Note that

this structural-acoustic test case is strongly coupled due to the presence of a heavy

density fluid. It can also be observed (simply by visual comparison of the transfer

functions) that the AMLS, CL procedures generates solution states (ABAQUS 2005)

which are far less accurate than the Arnoldi based projection formulations.

The performance of the AMLS method depends on a number of factors (Yang

2005): the number of partitioning levels, the number of modes selected from each

substructure, the choice of method for solving the final projected problem. Among

these, the number of modes selected from each substructure is very important. In

many cases, it could also turn out that most of the sub structure modes do not

make a significant contribution to the approximation of the desired eigenvector. In

order to increase the accuracy of the approximation, one naturally tends to compute

more number of eigenvectors for modal projections. However, due to the inherent

formulations of the AMLS method, the accuracy improvement would be negligible

whilst the cost of solving the projected eigenvalue problem becomes significantly

higher (Yang et al. 2005; Gao et al. 2005). This could possibly explain the reason

for the higher computational time required by the AMLS method for this benchmark

problem.

5Note that the CL, AMLS computations were performed using a compiled Fortran/C++ code and
the OSA, TSA Arnoldi computations were performed in a Mathematica/Matlab environment.

126
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Table 5.3.: Arnoldi expansion and input parameters for the undamped benchmark

test case.

Method Expansion Point(s) Input Subspace Output Subspace

OSA 750Hz Kr
q(A, g) –

TSA1 750Hz/750Hz Kr
q(A, g) Kl

q(A,L)

TSA2 250Hz/750Hz Kr
q(A, g) Kl

q(A,L)

TSA3 500Hz/1000Hz Kr
q(A, g) Kl

q(A,L)
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Theory ANSYS Direct [23412]

Figure 5.7.: A comparison of ANSYS direct inversion and analytical solution
(Stepanishen and Cox 2000; ABAQUS 2005) for the prediction of driv-
ing point displacement.
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Ansys Direct [23412] Arnoldi (OSA) Projection [100] 

Figure 5.8.: A comparison of ANSYS direct inversion and One-Sided Arnoldi (OSA)
prediction of driving point displacement.

Table 5.4.: A comparison of computational times for undamped Benchmark test

case.

Test Case ANSYS Direct ROM via Arnoldi Time Reduction

OSA 12413 s 286 s 97.6%

TSA1 12413 s 431 s 96.5%

TSA2 12413 s 464 s 96.2%

TSA3 12413 s 498 s 95.9%
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Table 5.5.: A breakdown of computational times for undamped benchmark test case

via One Sided and Two-Sided Arnoldi variants.

Computational Steps: ROM via Arnoldi Time

ANSYS Static Solution (ANSYS) 10 s

Extract Matrices (ANSYS/dumpmatrices) 190 s

Read Matrices (Mathematica) 04 s

Vector Computation and Projection (Mathematica) 70 s

Harmonic Analysis and Convergence (Mathematica/MATLAB) 12 s

Total: ROM via One-Sided Arnoldi 286 s

Read Matrices (Mathematica) 05 s

Vector Computation and Projection (Mathematica) 156 s

Harmonic Analysis and Convergence (Mathematica/MATLAB) 70 s

Total: ROM via Two-Sided Arnoldi 431 s

Read Matrices (Mathematica) 04 s

Vector Computation and Projection (Mathematica) 230 s

Harmonic Analysis and Convergence (Mathematica/MATLAB) 30 s

Total: ROM via Two-Sided Arnoldi 464 s

Read Matrices (Mathematica) 04 s

Vector Computation and Projection (Mathematica) 252 s

Harmonic Analysis and Convergence (Mathematica/MATLAB) 42 s

Total: ROM via Two-Sided Arnoldi 498 s
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Figure 5.9.: A comparison of ANSYS direct inversion and One-Sided Arnoldi (OSA)
prediction of pressure at the center of the acoustic domain.

Table 5.6.: A comparison of computational times with ABAQUS implemented (com-

piled Fortran/C++ code) AMLS and CL algorithms.

Method Uncoupled AMLS Coupled Lanczos (CL)

Pre-processing 4 s 4 s

Eigen Solution 82 s (4500Hz) 28 s (50 modes)

Forced Response 45 s 5 s

Total 131 s 33 s
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Figure 5.10.: Error Plot: ANSYS direct inversion and Arnoldi (OSA) predictions for
fluid nodal pressure at the center of the acoustic domain.

Figure 5.11.: Error Plot: ANSYS direct inversion, OSA and TSA predictions for
structural driving point displacement.
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Figure 5.12.: Error Plot: ANSYS direct inversion, TSA predictions for
fexp=750/750Hz, fexp=250/750Hz and fexp=500/1000Hz for structural
driving point displacement.
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Figure 5.13.: Test Case No. 1: Convergence Plot: OSA, TSA convergence at 101Hz.

Figure 5.14.: Test Case No. 1: Convergence Plot: OSA, TSA convergence at 1000Hz.

133



5. Direct Projection via Krylov Subspaces: Numerical Test Cases.

100 200 300 400 500 600 700 800 900 1000
10

−9

10
−8

10
−7

Frequency [Hz.]

 D
riv

in
g 

po
in

t D
is

pl
ac

em
en

t [
m

]
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Figure 5.15.: A comparison between ANSYS direct inversion and Two-Sided Second
order Arnoldi (TS-SOAR) predictions of driving point displacement for
linearly damped, Tld damping model.
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Figure 5.16.: Error Plot: ANSYS direct inversion and Two-Sided Second order
Arnoldi (TS-SOAR) predictions for structural driving point displace-
ment for Tld damping model.
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Figure 5.17.: Convergence Plot: Two-Sided Second order Arnoldi (TS-SOAR) con-
vergence at 101Hz and 1000Hz for Tld damping model.
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Figure 5.18.: A comparison between ANSYS direct inversion and Two-Sided Second
order Arnoldi (TS-SOAR) predictions of driving point displacement for
linearly damped, Tmd damping model.
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Figure 5.19.: Error Plot: ANSYS direct inversion and Two-Sided Second order
Arnoldi (TS-SOAR) predictions for structural driving point displace-
ment for Tmd damping model.
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Figure 5.20.: Convergence Plot: Two-Sided Second order Arnoldi (TS-SOAR) con-
vergence at 101Hz and 1000Hz for Tmd damping model.
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Figure 5.21.: A comparison between ANSYS direct inversion and Two-Sided Second
order Arnoldi (TS-SOAR) predictions of driving point displacement for
linearly damped, Thd damping model.

Table 5.7.: A comparison of computational times for damped test cases.

Test Case ANSYS Direct ROM via TS-SOAR Time Reduction

Tld 6413 s 75 s 98.83%

Tmd 6004 s 75 s 98.75%

Thd 6319 s 176 s 97.21%

The basis vectors for matching the coupled system moments are computed by

applying the Arnoldi variants, which computes the projection vectors spanning the

Krylov subspace, to match the minimum and maximum number of moments of the

system thereby leading to Padé type and Padé approximants. The moments in

the test cases shown are matched at approximately half of the analysis range. If

a Taylor series expansion is considered around a higher frequency, a reduced order
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Figure 5.22.: Error Plot: ANSYS direct inversion and Two-Sided Second order
Arnoldi (TS-SOAR) predictions for structural driving point displace-
ment for Thd damping model.
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Figure 5.23.: Convergence Plot: Two-Sided Second order Arnoldi (TS-SOAR) con-
vergence at 101Hz and 1000Hz for Thd damping model.
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Figure 5.24.: A comparison between undamped and damped solutions obtained by
analytical solution (Stepanishen and Cox 2000; ABAQUS 2005) and
Two-Sided Second order Arnoldi (TS-SOAR) procedure for Tld, Tmd,
Thd damping models.
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model could be obtained with better approximation properties around that fre-

quency range. For the undamped test case, Figures:[5.8,5.9,5.10,5.11,5.12] indicates

that very good approximation properties can be obtained by projecting the higher

dimensional system to a lower dimension and matching some of the low frequency

moments of the system. In the case where 2q moments are matched, a higher de-

gree of accuracy is obtained at a very small additional cost. For the damped test

cases, it can be observed from Figures:[5.15−→5.23] that there is no visible differ-

ence between ANSYS predicted and Arnoldi predicted driving point displacements.

A comparison between undamped (analytical modal expansion) and damped solu-

tions obtained by and Two-Sided Second order Arnoldi (TS-SOAR) procedure for

the three different linearly damped models is shown in Figure:[5.24]. Further, the

convergence plots shown in Figures:[5.17, 5.20,5.23] suggest that it is not possible to

increase the accuracy of the TS-SOAR approach beyond the use of 110 TS-SOAR

generated vectors. This means that the reduced order system is of order 110 as

opposed to the original higher dimensional model of order 23412. The computa-

tional times for the TS-SOAR process compared to the direct inversion technique in

ANSYS is shown in Table:[5.7]. A significant reduction in computational time can

be observed. It is worth noting that the computational time presented for this test

case consists only for TS-SOAR vector generation and reduced harmonic analysis.

It can be seen that in the third test case [Thd], the computational time seems to

be slightly more than the other two test cases. This is primarily because, different

expansion points have been chosen for the analysis, and therefore, an LU decompo-

sition depends on the expansion point used for the factorization. This means that,

for this test case, an LU factorization of the higher dimensional system matrices at

750Hz is more expensive that factorization using 900Hz or 1000Hz
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5.2. Test Case: 2: 3-D Plate backed air filled cavity

The second test case to be considered in this work is a simplified structure, rather

than an industrial application. The test structure is a 1m × 1m × 0.01m aluminium

plate, backed by a rigid walled cubic cavity of dimensions 1m × 1m × 1m. The me-

chanical properties of the structure are as follows: Young’s Modulus Es= 70 GPa,

mass density ρs=2700kg/m3 and Poisson’s ratio υ=0.35. The cubic cavity is filled

with air with the following properties: speed of sound c = 343m/s and mass den-

sity ρc=1.2kg/m3. A constant amplitude force excitation of 1N, over the frequency

range from 0 - 300Hz, was applied at one of the off-center nodes of the structural FE

mesh and the normal (UY) DOF’s belonging to the nodes along the boundary of the

aluminium plate are restrained. This is shown in Figures:[5.25,5.26]. 350 sub steps

were defined for the analysis. A total of 8400 elements were used for the coupled

FE model.

Figure 5.25.: Test Case No. 2: Plate backed cubic cavity (air filled) system.
Excitation location: a=(0.25m,1m,0.65m); Measurement location(s):
b=(0.75m,0.75m,0.25m), c=(0.35m,0.65m,0.30m).
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Figure 5.26.: Test Case No. 2: Coupled FE/FE model: Plate backed by a rigid
walled cavity.

5.2.1. Computational Results and Discussion

For the solution via the moment-matching approach, 30 Arnoldi vectors were gen-

erated using the SISO/SICO Arnoldi process described in the previous section. The

noise transfer function (Pressure/Force) at meaurement locations b and c i.e, at

(0.75m,0.75m,0.25m) and (0.35m,0.65m,0.30m) inside the fluid domain were speci-

fied as outputs for the analysis. For the MOR via Arnoldi approach, three different

expansion points have been chosen: f 1
exp = (ωE +ωB)/4; f 2

exp = (ωE +ωB)/2; f 3
exp =

ωE, to analyze the effect of moment matching at different frequencies.

The superimposed noise transfer functions, obtained by ANSYS FE and MOR via

Arnoldi for f 2
exp = (ωE +ωB)/2 are shown in Figures: [5.27,5.28]. It can be observed

that there is no visible difference in the respective noise transfer functions between

the two methods. The corresponding local error for all three expansion points and

the true and relative errors are shown in Figures:[5.29,5.30] and Figure:[5.31] respec-

tively. The convergence pattern indicates that to approximate the coupled system
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to the required level of accuracy required no more than 15 Arnoldi generated vectors

for approximately 1Hz and 30 Arnoldi generated vectors for 300Hz.
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ANSYS Direct [11827]
ARNOLDI Projection [30]

Figure 5.27.: Test Case No. 2: Predicted Noise Transfer Function using di-
rect and moment-matching Arnoldi projection for fluid node at
(0.75m,0.75m,0.25m).
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ANSYS Direct [11827]
ARNOLDI Projection [30]

Figure 5.28.: Test Case No. 2: Predicted Noise Transfer Function using di-
rect and moment-matching Arnoldi projection for fluid node at
(0.35m,0.65m,0.3m).
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Error: ARNOLDI Projection: Expansion: 75Hz.
Error: ARNOLDI Projection: Expansion: 150Hz.
Error: ARNOLDI Projection: Expansion: 300Hz.

Figure 5.29.: Test Case No. 2: Noise Transfer Function error plot for fluid node at
(0.75m,0.75m,0.25m) for fexp=75Hz; fexp=150Hz; fexp=300Hz.
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Error: Arnoldi Projection: Expansion: 75Hz.
Error: Arnoldi Projection: Expansion: 150Hz.
Error: Arnoldi Projection: Expansion: 300Hz.

Figure 5.30.: Test Case No. 2: Noise Transfer Function error plot for fluid node at
(0.35m,0.65m,0.3m) for fexp=75Hz; fexp=150Hz; fexp=300Hz.
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Figure 5.31.: Test Case No. 2: Convergence pattern for Arnoldi vectors at approxi-
mately 1Hz and 300Hz.
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5.3. Test Case: 2.1: Reciprocity Computation and

Comparison with Uncoupled Modal Coupling

The test structure is a 1m × 1m × 0.01m steel plate, backed by a rigid walled cubic

cavity of dimensions 1m × 1m × 1m. The mechanical properties of the structure

are as follows: Young’s Modulus Es= 200 GPa, mass density ρs=7800 kg/m3 and

Poisson’s ratio υ=0.3. The cavity is filled with water with the following properties:

speed of sound c=343 m/s and mass density ρc=1.2 kg/m3. Four different damping

values are chosen for the analysis (a) ζ = 0 (Undamped) (b) ζ = 0.01 (c) ζ = 0.02 and

(d) ζ = 0.03. A constant amplitude force excitation of 1N, over the frequency range

from 0 - 300Hz, was applied at one of the off-center node (0.25m,1m,0.65m) of the

structural FE mesh as shown in Figure:[5.26]. Similar to the previous test case, the

normal (UY) DOF’s belonging to the nodes along the boundary of the aluminium

plate are restrained. 350 sub steps were defined for the analysis. A total of 8400

elements were used for the coupled FE model. The Harmonic analysis of the coupled

equations were solved using two approaches: (a) the direct method using the AN-

SYS FE solver, which in-turn employs the LU decomposition method for all defined

sub steps; and (b) MOR via the SISO/SICO Arnoldi algorithm. 30 vectors were

generated using the Arnoldi algorithm described in the previous section. The noise

transfer function (Pressure/Force) at the center of the box (0.5m,0.5m,0.5m) and

(0.75m,0.75m,0.25m), and (0.35m,0.65m,0.30m) inside the fluid domain are speci-

fied as outputs for the analysis.

It is well known that when the external excitation of a coupled vibro-acoustic

system consist of a mechanical point force (fj) at a certain location (j) in a certain

direction, and an acoustic point source (qi) at a certain location (i), the following

coupled vibro-acoustic reciprocity relationship, originally postulated by Rayleigh

(1873) and later confirmed and elaborated by Lyamshev (1959) can be formulated
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and applied to coupled structural-acoustic systems for both experimental and com-

putational vibro-acoustic applications (Fahy 2003; Desmet 1998; Cornish 2000; Nor-

ris and Rebinsky 2000; Wyckaert et al. 1996):

∣∣∣∣pi

fj

∣∣∣∣
qi=0

=

∣∣∣∣− ẍj

qi

∣∣∣∣
fj=0

(5.1)

Where, fj and pi correspond to a structural force at location j on the structure and

pressure at location i inside a cavity respectively. ẍ and qi denote the structural ac-

celeration and acoustic volume acceleration confined to the fluid domain. In words,

Equation:[5.1] means that the ratio between the acoustical response pi at location i

within the cavity, and a structural force excitation fj at location j on the structure

is equal to the ratio between the acceleration response ẍj measured at location j, in

the direction of applied force fj, and an acoustic excitation qi.

In terms of coupled structural-acoustic modeling, this simply means that the

acoustic pressure pi at location i within the cavity, caused by a unit point force

excitation fj at location j on the structure and the structural acceleration ẍj mea-

sured at location j, in the direction of applied force fj, caused by a unit point source

acoustic excitation at location i, must have the same amplitudes but opposite phases.

Therefore, to demonstrate the accuracy of the proposed Arnoldi based reduced

order modeling technique, the vibro-acoustic reciprocity relations are verified for

this test case. Two dynamic transfer functions, namely, the structural accelerence

response to unit acoustic excitation (Volume Acceleration) and the acoustic pressure

response to a unit structural excitation (Force) for the problem described above is

considered. While the unit structural point force location remains the same, the

fluid node corresponding to (0.5m,0.5m,0.5m) is chosen for subsequent unit acous-

tic excitation. To enable this vibro-acoustic reciprocity computation, two different
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models are set up and solved using the direct approach in ANSYS and MOR via the

Arnoldi based projection formulation.

The sparsity plot of the globally assembled higher dimensional stiffness and the

mass matrices for ζ=0.01 are shown in Figures:[5.32,5.33] respectively. Here, nz rep-

resents the number of non-zero elements present in the matrix. It is worth noting

that, the higher dimensional matrix is sparse, and the reduced matrix obtained via

the projection of Arnoldi vectors results in densely populated system matrices.

Figure 5.32.: Test Case No. 2.1: Globally Assembled Higher Dimensional Stiffness
Matrix Sparsity Plot for ζ=0.01.

In addition to the direct inversion technique, for this test case, the results from an

uncoupled modal approach are also utilized for solution accuracy comparison pur-

poses. This well known uncoupled modal approach (or the so called modal coupling

technique) (Lyon and Maidanik 1962; Fahy 1969; Pope 1971; Dowell et al. 1977),

presented also in the book by Fahy (1985) is a popular dimension reduction method
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Figure 5.33.: Test Case No. 2.1: Globally Assembled Higher Dimensional Mass
Matrix Sparsity Plot for ζ=0.01.

in coupled structural-acoustics. This uses the in vacuo modal responses of a struc-

ture and hard walled acoustic modal response of a cavity and combines them into a

coupled vibro-acoustic response. Therefore, for this test case, a comparison between

two reduced order models: ROM via one-sided Arnoldi (OSA) approach and ROM

via the well known uncoupled modal coupling are performed6. A short discussion of

the uncoupled modal approach is given in Appendix:(B) and in Puri et al. (2007).

6This modal coupling part of the work presents results from a collaboration between The Uni-
versity of Adelaide, Australia, who have experience with modal coupling (Cazzolato 1999),
and Oxford Brookes University, UK, who have applied Arnoldi based reduced order modeling
techniques to fully coupled structural-acoustic analysis and optimization problems (Puri et al.
2006; Puri et al. 2007). Some of the results discussed in this section can also be found in Puri
et al. (2007).
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5.3.1. Computational Results and Discussion

The reciprocity transfer functions, namely, the structural accelerence over

unit acoustic excitation (volume acceleration) and cavity pressure over in-

put force obtained by moment matching via the Arnoldi process for

ζ=0,ζ=0.01,ζ=0.02,ζ=0.03 are shown in Figures:[5.34,5.35,5.36,5.37]. The noise

transfer functions (cavity pressure over input force) corresponding to fluid nodes

(0.5m,0.5m,0.5m),(0.75m,0.75m,0.25m) and (0.35m,0.65m,0.30m) obtained by us-

ing the direct inversion method in ANSYS and moment matching via the Arnoldi

process for ζ=0.01,ζ=0.02, ζ=0.03 are shown in Figures:[5.38,5.39,5.40] respectively.

The corresponding local error plots obtained using Equation:[4.93] for the structural

and fluid nodes are shown in Figures:[5.41,5.42,5.43,5.44]. The convergence plots

shown in Figures:[5.45,5.46,5.47] indicate that a maximum of 30 Arnoldi vectors are

required for the solution state convergence.

The computational times required to solve the coupled model via ANSYS direct

method for all defined substeps and by employing order reduction via the Arnoldi

process are shown in Table:[5.8]. In the case of a structurally damped model, the

complex numbers relating to the structural damping are extracted. The higher

dimensional model is then read using Mathematica (Wolfram 2003), and order re-

duction and projection performed via the Arnoldi process. The harmonic analysis

and convergence of the reduced system is then performed using LU decomposition

in the Mathematica/Matlab (Matlab 2006) environment. The split computational

times are shown in Table:[5.9].
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Figure 5.34.: Moment matching Arnoldi projection predicted vibro-acoustic reci-
procity transfer functions for structural node at (0.25m,1.0m,0.65m)
and fluid node at (0.5m,0.5m,0.5m) for ζ=0.

Figure 5.35.: Moment matching Arnoldi projection predicted vibro-acoustic reci-
procity transfer functions for structural node at (0.25m,1.0m,0.65m)
and fluid node at (0.5m,0.5m,0.5m) for ζ=0.01.
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Figure 5.36.: Moment matching Arnoldi projection predicted vibro-acoustic reci-
procity transfer functions for structural node at (0.25m,1.0m,0.65m)
and fluid node at (0.5m,0.5m,0.5m) for ζ=0.02.

Figure 5.37.: Moment matching Arnoldi projection predicted vibro-acoustic reci-
procity transfer functions for structural node at (0.25m,1.0m,0.65m)
and fluid node at (0.5m,0.5m,0.5m) for ζ=0.03.
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Figure 5.38.: ANSYS and moment matching Arnoldi projection predicted fluid pres-
sure at (0.75m,0.75m,0.25m) for ζ=0.01.

Figure 5.39.: ANSYS and moment matching Arnoldi projection predicted fluid pres-
sure at (0.35m,0.65m,0.30m) for ζ=0.02.
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Figure 5.40.: ANSYS and moment matching Arnoldi projection predicted fluid pres-
sure at (0.5m,0.5m,0.5m) for ζ=0.03.

Figure 5.41.: Local Error plot for structural node at (0.25m,1m,0.65m) for
ζ=0,0.01,0.02,0.03.
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Figure 5.42.: Local Error plot for fluid node at (0.75m,0.75m,0.25m) for
ζ=0,0.01,0.02,0.03.

Figure 5.43.: Local Error plot for fluid node at (0.35m,0.65m,0.30m) for
ζ=0,0.01,0.02,0.03.
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Figure 5.44.: Local Error plot for fluid node at (0.5m,0.5m,0.5m) for
ζ=0,0.01,0.02,0.03.

Figure 5.45.: Test Case No. 2.1: Convergence Plot for ζ=0.01.
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Figure 5.46.: Test Case No. 2.1: Convergence Plot for ζ=0.02.

Table 5.8.: A comparison of computational times for reciprocity test case.

Test Case ANSYS Direct ROM via Arnoldi Time Reduction

ζ = 0 7709 s 322 s 95.82%

ζ = 0.01 7304 s 446 s 93.89%

ζ = 0.02 7057 s 448 s 93.65%

ζ = 0.03 7344 s 474 s 93.54%

A comparison of ROM solutions generated by matching the higher dimensional

system moments (around an expansion point) and by truncating and retaining un-

coupled structural and acoustic modes in their respective basis are shown in Fig-

ures:[5.48,5.49]. The results indicate that the reduced order model generated via the

moment matching leads to excellent accuracy over the entire frequency range. The

moments in the test case shown are matched at approximately half of the analysis
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Table 5.9.: Split Computational Times for reciprocity test case: ROM via Arnoldi.

Test Case Computational Steps: ROM via Arnoldi Time

ζ = 0 ANSYS Static Solution (ANSYS) 08 s

Extract Matrices (ANSYS/dumpmatrices) 266 s

Read Matrices (Mathematica) 04 s

Vector Computation and Projection (Mathematica) 43 s

Harmonic Analysis and Convergence (Mathematica/MATLAB) 01 s

Total: ROM via Arnoldi 322 s

ζ = 0.01 ANSYS Static Solution (ANSYS) 07 s

Extract Matrices (ANSYS/dumpmatrices) 267 s

Read Matrices (Mathematica) 04 s

Vector Computation and Projection (Mathematica) 167 s

Harmonic Analysis and Convergence (Mathematica/MATLAB) 01 s

Total: ROM via Arnoldi 446 s

ζ = 0.02 ANSYS Static Solution (ANSYS) 07 s

Extract Matrices (ANSYS/dumpmatrices) 265 s

Read Matrices (Mathematica) 05 s

Vector Computation and Projection (Mathematica) 170 s

Harmonic Analysis and Convergence (Mathematica/MATLAB) 01 s

Total: ROM via Arnoldi 448 s

ζ = 0.03 ANSYS Static Solution (ANSYS) 08 s

Extract Matrices (ANSYS/dumpmatrices) 275 s

Read Matrices (Mathematica) 05 s

Vector Computation and Projection (Mathematica) 185 s

Harmonic Analysis and Convergence (Mathematica/MATLAB) 2 s

Total: ROM via Arnoldi 474 s
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Figure 5.47.: Test Case No. 2.1: Convergence Plot for ζ=0.03.

range. Obviously, if a Taylor series expansion is considered around a higher fre-

quency, a reduced order model could be obtained with better approximation proper-

ties around that frequency range. On the other hand, the truncated modal coupling

(uncoupled modes) approach, where 34 modes (1.5 × ωe) are retained in total, gives

reasonably good accuracy at resonance and poor accuracy off resonance, compared

with the direct method. In the full uncoupled modal approach, where 106 modes

are retained, leads to better accuracy in comparison with the truncated version.

This effect of including more modes in the Modal Coupling method can be seen in

Figures:[5.50,5.51]. It can be observed that the accuracy of prediction via the un-

coupled modal approach is improved, but it is still not as good as the Arnoldi based

reduced order modeling approach. Further, the acoustic uncoupled modal basis has

to be substantially increased to achieve the desired accuracy. This phenomenon

is similar to the one observed in the benchmark test case (Section:5.1), where a

very higher number of modes (up to 4500Hz) were included in the AMLS method

in order to achieve desired accuracy. The loss of accuracy due to residues from
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truncated modes is well documented for weakly coupled systems (Fahy 1985). The

phenomenon seems to occur both in water and air filled cavities. It is worth noting

that, for many applications, the contribution of the prediction off resonance may be

minor. An interesting comparison is with the case of active control application by

Cazzolato (1999). A comparison of error quantities of ROMs obtained via moment

matching Arnoldi and uncoupled modal approaches (Truncated and Full) for the

undamped and damped test cases are shown in Figures:[5.53, 5.54, 5.55, 5.56]. It

can be observed that for some outputs, retaining a higher number of modes in the

uncoupled basis does not necessarily improve accuracy for all outputs considered in

this test case. For example, in Figure:[5.54], retaining a larger number of modes

(Structure + Fluid: 106) results in an increase in maximum error when compared to

the ANSYS direct inversion technique. This is because, the prediction around 200Hz

(a minor shift) in Figure:[5.50], has not been accurately captured in the uncoupled

modal basis method. On the other hand, moment matching Arnoldi approaches

seem to accurately capture the coupled dynamics of the system under investigation.
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ANSYS Direct: 11827 DOFs
Arnoldi Projection: 30 Vectors
Modal Coupling Projection:Truncated: 34 Modes

Figure 5.48.: ANSYS direct and truncated uncoupled modes (fluid+structure)
projection predicted noise transfer functions for fluid node at
(0.5m,0.5m,0.5m) for ζ=0.
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ANSYS Direct: 11827 DOFs
Arnoldi Projection: 30 Vectors
Modal Coupling Projection:Truncated: 34 Modes

Figure 5.49.: ANSYS direct and truncated uncoupled modes (fluid+structure)
projection predicted noise transfer functions for fluid node at
(0.75m,0.75m,0.25m) for ζ=0.03.
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ANSYS Direct: 11827 DOFs
Modal Coupling Projection: 106 Modes

Figure 5.50.: ANSYS direct and uncoupled modes (fluid+structure) projection pre-
dicted noise transfer functions for fluid node at (0.5m,0.5m,0.5m) for
ζ=0.

0 50 100 150 200 250 300
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Frequency (Hz.)

D
is

pl
ac

em
en

t A
m

pl
itu

de
 (

m
) 

 

 
ANSYS Direct: 11827 DOFs
Modal Coupling Projection: 106 Modes

Figure 5.51.: ANSYS direct and uncoupled modes (fluid+structure) projection pre-
dicted driving point displacement transfer functions for structural node
at (0.25m,1m,0.65m) for ζ=0.
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ANSYS Direct: 11827 DOFs
Modal Coupling Projection: 106 Modes

Figure 5.52.: ANSYS direct and uncoupled modes (fluid+structure) projection pre-
dicted noise transfer functions for fluid node at (0.75m,0.75m,0.25m)
for ζ=0.03.
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ROM via ARNOLDI [30]
ROM via Uncoupled Modes [106]
ROM via Uncoupled Modes [34]

Figure 5.53.: A comparison of error quantities for driving point displacements for
structural node at (0.25m,1m,0.65m) obtained using Arnoldi projec-
tion, Uncoupled modes approach (Full) and Truncated uncoupled
modal approach for ζ=0.
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ROM via ARNOLDI [30]
ROM via Uncoupled Modes [106]
ROM via Uncoupled Modes [34]

Figure 5.54.: A comparison of error quantities for noise transfer function for fluid
node at (0.5m,0.5m,0.5m) obtained using Arnoldi projection, Uncou-
pled modes approach (Full) and Truncated uncoupled modal approach
for ζ=0.

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency [Hz]

E
rr

or
: [

(
A

N
S

Y
S

−
R

O
M

)
/(

A
N

S
Y

S
)

]

 

 

ROM via ARNOLDI [30]
ROM via Uncoupled Modes [106]
ROM via Uncoupled Modes [34]

Figure 5.55.: A comparison of error quantities for noise transfer function for fluid
node at (0.75m,0.75m,0.25m) obtained using Arnoldi projection, Un-
coupled modes approach (Full) and Truncated uncoupled modal ap-
proach for ζ=0.03.
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Figure 5.56.: A comparison of error quantities for noise transfer function for fluid
node at (0.5m,0.5m,0.5m) obtained using Arnoldi projection, Uncou-
pled modes approach (Full) and Truncated uncoupled modal approach
for ζ=0.03.
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5.4. Test Case: 3: 3D Plate backed Rectangular

Water Filled Cavity

A plate backed water filled cavity is considered as the third test case to compare the

efficiency and accuracy of dimension reduction via the Arnoldi process. This solu-

tion method is also compared with a harmonic analysis using the direct LU solution

method in ANSYS. The cavity-plate has the following dimensions: 0.35 m long,

0.29 m wide, and 0.14 m deep and 0.0015 m thick aluminium plate. The mechanical

properties of the structure are as follows: Young’s Modulus Es= 72 GPa, mass den-

sity ρs=2700 kg/m3 and Poisson’s ratio υ=0.33. The cavity is filled with water with

the following properties: speed of sound c=1500 m/s, mass density ρc=1000 kg/m3.

The plate is discretized using 18 × 15 ANSYS SHELL181 elements and the cavity is

discretized using 18 × 15 × 4 ANSYS FLUID30 elements. The coupled system was

excited using a constant structural point force of 1N over the entire frequency range

of 0-600Hz at one of the off-center structural nodes on the simply supported plate.

For this test case, the normal (UY) DOF’s belonging to the nodes along the bound-

ary of the aluminium plate are restrained. These are shown in Figures:[5.57,5.58].

The desired output quantities considered for this test case are as follows: (a) the

structural displacement response at driving point i.e at the unit structural point

force location a2=(0.039m,0.14m,0.078m) and (b) fluid pressure close to the center

of the rectangular domain at b2=(0.135m,0.07m,0.175m). A description of this test

case can also be found in Tournour and Atalla (2000).

It is worth mentioning that the dimension of the resulting coupled FE model for

this test case is indeed small - compared to test cases: (1,2 and 2.1). However, from

a modal coupling viewpoint, the presence of a higher density fluid results in a very

strong coupling between the plate modes and the cavity modes. Indeed, since the

modal coupling is proportional to the square root of the bulk modulus of the fluid,
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the presence of a heavy fluid results in a very strong coupling between the plate

modes and the cavity modes. Roughly speaking, the coupling strength between the

fluid and the structural domains is directly proportional to the density of the fluid

(Cepkauskas and Stevens 1983; Hong and Kim 1995a; Hong and Kim 1995b). At

this point, it is worth mentioning that this is also true for the coupling between the

lower plate modes and the higher cavity modes, usually low but drastically increased

by the high bulk modulus of the fluid (Tournour and Atalla 2000). Therefore, sim-

ilar to the benchmark test case, this test case has also been chosen to evaluate the

performance of the Arnoldi based projection formulation for strong coupling. It is

worth mentioning that for industrial NVH applications (e.g. prediction of noise in

an automotive or aerospace interior) air is used as the fluid medium, which results in

weak coupling. That is, there exists a weak coupling between the structural modes

and the rigid walled cavity modes. An illustration of the reduced accuracy and

efficiency of the uncoupled modal approach for this test case7 can be found in Ap-

pendix:(B). The sparsity plots for the resulting higher dimensional coupled stiffness

and mass matrices are shown in Figures:[5.59, 5.60].

For the damped case, two different forms of structural damping are considered

for this test case: (a) Constant, frequency independent damping, which is frequency

independent by definition and (b) Linearly varying, frequency dependent damping.

The damping parameters for constant and frequency dependent damping used for

this test case are shown in Table:[5.10, 5.11]. The undamped computations de-

scribed were performed on a Windows XP, Pentium 4, 3GHz, 2GB RAM machine

[Me1]. The constantly damped and linearly damped computations described were

performed on a Windows XP, Pentium 4, 3.2GHz, 2GB RAM machine [Me2]. The

corresponding bench calculations are shown in Appendix:(A).

7Tournour and Atalla (2000) also demonstrated the reduced accuracy and convergence properties
for strongly coupled systems.
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For the constant damping cases [TC3LD, TC3MD, TC3HD], the fluid fluid pressure

at approximately the centre of the rectangular cavity is considered as the output

node of interest. For linearly damped test cases [TC3ld, TC3md, TC3hd], the struc-

tural driving point displacement is considered as output for the analysis. Similar to

test case-1, the frequency dependent damping models results in an explicit partici-

pation of [Csa] and the direct-inversion technique cannot be avoided. Therefore, for

dimension reduction of the higher dimensional system matrices, two different mo-

ment matching Arnoldi approaches are investigated: (a) The linearization method,

where the second order system is converted into an equivalent first order form and

the moments are matched via the one sided Arnoldi process (b) The two-sided Sec-

ond order Arnoldi process (TS-SOAR), which does not need conversion to first order

and thus preserves the underlying second order structure for the given problem. The

reader is reminded that the equivalent linearized system is obtained via Equations:

[4.70a, 4.70b]. The sparsity plot obtained using MATLAB for the equivalent lin-

earized system (Dsa, Gsa) is shown in Figures:[5.61,5.62].

Table 5.10.: Constant Damping values and Expansion point for One sided Arnoldi

Process for the water filled rectangular cavity.

Damped Test Cases Damping Value Expansion Point

Low Damping [TC3LD] βζ
j =0.03 300Hz

Medium Damping [TC3MD] βζ
j =0.05 300Hz

High Damping [TC3HD] βζ
j =0.10 300Hz

To provide a variation to this test case, the fluid medium of the coupled finite

element model is parametricaly modified to air. In this way, the Arnoldi projections

are evaluated for weakly coupled systems. For the air filled test case, two boundary
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Figure 5.57.: Test Case No. 3: Plate backed rectangular cavity (water filled) system.
Excitation location: a2 = (0.039m, 0.14m, 0.078m); Measurement loca-
tion(s): a2 = (0.039m, 0.14m, 0.078m), b2 = (0.135m, 0.07m, 0.175m).

Figure 5.58.: Test Case No. 3: Fully Coupled FE model.
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Figure 5.59.: Test Case No. 3: Stiffness Matrix sparsity plot.
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Figure 5.60.: Test Case No. 3: Mass Matrix sparsity plot.
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Figure 5.61.: Test Case No. 3: Equivalent Linearized System (Equation:4.70a) Dsa

sparsity plot for βm
j =4.0E-05 [TC3md].
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Figure 5.62.: Test Case No. 3: Equivalent Linearized System (Equation:4.70a) Gsa

sparsity plot for βm
j =4.0E-05 [TC3md].
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Table 5.11.: Frequency Dependent Damping values and Expansion points for Two-

Sided Second order Arnoldi Process and One sided Arnoldi (Linearized

system) for the water filled rectangular cavity.

Damped Test Cases Damping Expansion Points Expansion Point

Value for TS-SOAR for OSA

Low Damping [TC3ld] βm
j =2.0E-05 300Hz / 300Hz 300Hz

Medium Damping [TC3md] βζ
m=4.0E-05 300Hz / 300Hz 300Hz

High Damping [TC3hd] βζ
m=6.0E-05 300Hz / 300Hz 300Hz

conditions are investigated: (a) Free-free and (b) fully clamped (all DOF’s along

the edges of the plate constrained). In addition to this, the free-free test case is

acoustically damped, via the use of frequency independent absorption co-efficient

(βac), which directly inserts terms into Csa (ANSYS 2005). A description of the air

filled test cases can be found in Table:[5.12].

Table 5.12.: A description of test cases for the air filled rectangular cavity.

B.C’s Damped Test Cases Damping Value Expansion Point

Free-Free [TC3FFa] βac=0.04 TS-SOAR: 350Hz

Clamped [TC3CLa] Undamped TSA: 600Hz
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5.4.1. Computational Results and Discussion

For the dimension reduction methods, 50 vectors were generated using the SICO

Arnoldi and SISO TS-SOAR algorithm implemented in Mathematica. For the un-

damped model with an expansion point of 250Hz, the noise transfer function and

the structural receptance transfer function (structural displacement over structural

input force) and the fluid acoustic transfer function (cavity pressure over structural

input force) are shown in Figures:[5.63,5.64]. The corresponding fluid pressure and

structural displacement errors are shown in Figure:[5.65]. For the MOR via Arnoldi

approach, an expansion point of fexp = 350Hz was used. The convergence plots

at 1Hz and 600Hz obtained via Equations:[4.94a,4.94b] are shown in Figure:[5.66].

It can be observed that to approximate the coupled system to the required level of

accuracy required no more than 50 Arnoldi generated vectors for both 1Hz and for

600Hz.
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Figure 5.63.: Test Case No. 3: Predicted Fluid Noise Transfer Function (NTF) using
direct and moment-matching Arnoldi projection for structural node at
(0.135m,0.07m,0.175m).
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Figure 5.64.: Test Case No. 3: Predicted Structural Displacement Transfer Function
(Receptance) using direct and moment-matching Arnoldi projection for
fluid node at (0.039m,0.14m,0.078m).

For the constantly damped material models described in Table:[5.10], the struc-

tural receptance transfer function and the fluid acoustic noise transfer function are

shown in Figures:[5.67, 5.69, 5.71]. The corresponding convergence patterns for

ζ = 3%, ζ = 5%, ζ = 10% are shown in Figures:[5.68, 5.70, 5.72]. Similar to the

undamped version of the described test case, it can be observed that to approximate

the coupled higher dimensional system to the required level of accuracy required

no more than 40 Arnoldi generated vectors for both 1Hz and for 600Hz. At this

point, machine precision is reached, accounting for 16 significant digits for the de-

scribed computation. The error plots obtained for the constantly damped test cases

is shown in Figure:[5.73]. Here, it can be observed that, for a given number of

Arnoldi generated vectors (50 in this case), the error seems to decrease (relatively)

with the addition of increasing damping. Loosely speaking, this phenomenon is due

to the fact that in an undamped calculation, the response is not smoothed, making
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Figure 5.65.: Test Case No. 3: Error Plot for fluid and structural outputs.
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Figure 5.66.: Test Case No. 3: Convergence pattern for Arnoldi vectors at 1Hz and
600Hz.
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errors more apparent. Also, in the undamped case, the poles and zeros of the trans-

fer function follow immediately after each other whereas in the damped cases, the

transition between them is well smoothed due to the presence of damping.
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Figure 5.67.: Predicted Fluid Noise Transfer Function using direct and
moment-matching Arnoldi (OSA) projection for fluid node at
(0.135m,0.07m,0.175m) for ζ=0.03.

For the frequency varying (linearly) damped material models described in Ta-

ble:[5.11], the structural receptance transfer function obtained using the lineariza-

tion approach and SISO TS-SOAR process are shown in Figures:[5.74, 5.75,5.76].

The error quantities for the ROM obtained using the TS-SOAR process is shown in

Figure:[5.77]. It can be observed that there is no visible difference in the transfer

functions obtained using both approaches. The corresponding convergence models

for the Arnoldi vectors generated via the SISO TS-SOAR and SICO OSA (lineariza-

tion method) are shown in Figures:[5.81, 5.82,5.83, 5.84, 5.85, 5.86]. In the case

where the given higher dimensional system is turned into an equivalent linearized
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Figure 5.68.: Convergence pattern for moment-matching Arnoldi (OSA) projection
at 1Hz and 600Hz for ζ=0.03.

form, 100 Arnoldi (OSA) vectors are required to accurately approximate the system.

On the other hand, for the TS-SOAR process, where the system retains its second

order structure, only 30 Arnoldi (TS-SOAR) vectors are required to accurately ap-

proximate the system. The difference in the number of vectors can be attributed

to the fact that in the linearized system, scaling factors are introduced (in the form

of identity matrix and sparse zero matrices) to form Dsa and Gsa, and therefore,

more vectors are required to counter the introduced scaling. At this point, it is worth

mentioning that there are different methods to compute the equivalent linearized sys-

tem. In this thesis, the simplest method for linearization (Equations:4.70a,4.70b)is

adopted. For a description of other methods, the reader is referred to Bai (2002),

Bai, Meerbergen, and Su (2005), Freund (2001), Freund (2000). A comparison of

local error quantities for the ROM obtained via SICO OSA and SISO TS-SOAR

for all three damping models are shown in Figures:[5.78, 5.79, 5.80]. It can actu-
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Figure 5.69.: Predicted Fluid Noise Transfer Function using direct and
moment-matching Arnoldi (OSA) projection for fluid node at
(0.135m,0.07m,0.175m) for ζ=0.05.
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Figure 5.70.: Convergence pattern for moment-matching Arnoldi (OSA) projection
at 1Hz and 600Hz for ζ=0.05.
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Figure 5.71.: Predicted Fluid Noise Transfer Function using direct and
moment-matching Arnoldi (OSA) projection for fluid node at
(0.135m,0.07m,0.175m) for ζ=0.10.
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Figure 5.72.: Convergence pattern for moment-matching Arnoldi (OSA) projection
at ω=1Hz and ω=600Hz for ζ=0.10.
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Figure 5.73.: Error plot for fluid grid point at (0.135m,0.07m,0.175m) for damping
values: ζ=0.03, ζ=0.05, ζ=0.10.
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ally be observed that while the error quantities are very low around the expansion

point (where the higher dimensional, second order system matrices are factorized)

for the TS-SOAR process, the error quantities in general, are very low throughout

the entire frequency range for the linearized ROM. The observation is consistent

with all three damping models investigated in this test case. This means that, the

higher dimensional linearized model generates a ROM where the errors are the least

- compared with the second order retaining TS-SOAR process.
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ANSYS Direct [3278]
TS−SOAR ARNOLDI Projection [30]
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Figure 5.74.: Predicted Driving Point Displacement Transfer Function (Receptance)
using direct and moment-matching Linearized Arnoldi and TS-SOAR
projection for structural node at (0.039m,0.14m,0.078m) for βm

j =2.0E-
05.
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ANSYS Direct [3278]
TS−SOAR ARNOLDI Projection [30]
Linearized ARNOLDI Projection [100]

Figure 5.75.: Predicted Driving Point Displacement Transfer Function (Receptance)
using direct and moment-matching Linearized Arnoldi and TS-SOAR
projection for structural node at (0.039m,0.14m,0.078m) for βm

j =4.0E-
05.
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Figure 5.76.: Predicted Driving Point Displacement Transfer Function (Receptance)
using direct and moment-matching Linearized Arnoldi and TS-SOAR
projection for structural node at (0.039m,0.14m,0.078m) for βm

j =6.0E-
05.
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Figure 5.77.: Error plot for Predicted Driving Point Displacement Transfer Func-
tion (Receptance) at (0.039m,0.14m,0.078m) for TS-SOAR projec-
tion for damping values: βm

j =2.0E-05 [TC3ld], β
m
j =4.0E-05 [TC3md],

βm
j =6.0E-05 [TC3hd].
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Error: TS−SOAR ARNOLDI Projection [30]
Error: Linearized ARNOLDI Projection [100]

Figure 5.78.: Error plot for Predicted Driving Point Displacement Transfer Func-
tion (Receptance) at (0.039m,0.14m,0.078m) for Linearized Arnoldi
and TS-SOAR projections with damping value βm

j =2.0E-05 [TC3ld].
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Error: TS−SOAR ARNOLDI Projection [30]
Error: Linearized ARNOLDI Projection [100]

Figure 5.79.: Error plot for Predicted Driving Point Displacement Transfer Func-
tion (Receptance) at (0.039m,0.14m,0.078m) for Linearized Arnoldi
and TS-SOAR projections with damping value βm

j =4.0E-05 [TC3md].
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Error: TS−SOAR ARNOLDI Projection [30]
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Figure 5.80.: Error plot for Predicted Driving Point Displacement Transfer Func-
tion (Receptance) at (0.039m,0.14m,0.078m) for Linearized Arnoldi
and TS-SOAR projections with damping value βm

j =6.0E-05 [TC3hd].
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Figure 5.81.: Convergence pattern for moment-matching Arnoldi (TS-SOAR) pro-
jection at 1Hz and 600Hz for βm

j =2.0E-05.
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Figure 5.82.: Convergence pattern for moment-matching Arnoldi (TS-SOAR) pro-
jection at 1Hz and 600Hz for βm

j =4.0E-05.

The computational times required to solve the coupled model via ANSYS di-

rect inversion method for the undamped and constantly damped test cases via the

One-sided Arnoldi process is shown in Table:[5.13]. For these test cases, the compu-

tational time for the ROM is simply the sum of Arnoldi vector generation, projection

to second order form and reduced harmonic analysis in the desired frequency band

and sub steps. That is, the computational time required to read and write the higher

dimensional system matrices are excluded. This is because, in the case of direct im-

plementation of Arnoldi variants in a commercial FE environment, it is easy to

continue directly from the globally assembled structural-acoustic matrices thereby

alleviating the problem of extracting the assembled matrices. It is worth adding

that, similar to Test Case No. 2, the complex numbers relating to the structural

damping are extracted. The higher dimensional model is then read using Mathemat-

ica (Wolfram 2003), and order reduction and projection performed via the Arnoldi

process. The reduced harmonic analysis and convergence of the reduced system is
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Figure 5.83.: Convergence pattern for moment-matching Arnoldi (TS-SOAR) pro-
jection at 1Hz and 600Hz for βm

j =6.0E-05.
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Figure 5.84.: Convergence pattern for moment-matching Linearized Arnoldi projec-
tion at 1Hz and 600Hz for βm

j =2.0E-05.
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Figure 5.85.: Convergence pattern for moment-matching Linearized Arnoldi projec-
tion at 1Hz and 600Hz for βm

j =4.0E-05.
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Figure 5.86.: Convergence pattern for moment-matching Linearized Arnoldi projec-
tion at 1Hz and 600Hz for βm

j =6.0E-05.
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then performed using LU decomposition in Mathematica/Matlab (Matlab 2006) en-

vironment.

Obviously, the resulting accuracy of the linearized approach and second order re-

taining TS-SOAR process warrants a comparison of computational time for both

ROM methods in the case of frequency dependent structural damping. The compu-

tational times required to solve the coupled system via the ANSYS direct inversion

method and dimension reduction via the linearization Arnoldi (OSA) approach and

structure preserving TS-SOAR approach are shown in Table:[5.14].

Similar to the undamped and constantly damped computations, the computa-

tional time for the ROM is simply the sum of Arnoldi vector generation, projection

to first order (Linearization Arnoldi) / second order form (TS-SOAR) and reduced

harmonic analysis in the desired frequency band and substeps. It can be observed

that the computational time required by the linearization approach is slightly higher

than the structure preserving TS-SOAR process. This is primarily due to the larger

size of the fully coupled structural-acoustic system encountered due to the conversion

to a first order system of double the dimension. As a result, an LU factorization of

the first order system matrices is expensive. It is worth reminding the reader that, in

this test case, the order of the higher dimensional system is quite small (3278 states)

and the converted state space model (6556 states) is still small thus making an LU

factorization of the system matrices possible using standard numerical packages like

MATLAB/Mathematica8. However, for a large scale system, it is likely that an

LU factorization of the converted first order system is not possible due to memory

requirements, thus making the linearization approach often not practical. On the

other hand, the TS-SOAR process does not require any conversion, and therefore

8In MATLAB an LU decomposition is performed using the [L,U,P] = lu(A) and subsequently the
backslash operator is used to solve the set of linear equations (Matlab 2006). In Mathematica
the command LinearSolve[A, b] performs an LU decomposition and the required forward and
backward substitution to solve the matrix equation A.x=b (Wolfram 2003).
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only requires an LU factorization (around a given expansion point) of the original

system matrices.

Table 5.13.: A comparison of computational times for undamped and damped test
cases.

Test Case ANSYS Direct ROM via Arnoldi Time Reduction

ζ = 0 2435 s 8.9 s 99.6%

TC3LD 1136 s 13.6 s 98.8%

TC3MD 915 s 14.2 s 98.4%

TC3HD 1579 s 12.9 s 99.1%

Table 5.14.: A comparison of computational times for frequency dependent damping
test cases.

Test Case ANSYS Direct ROM via Arnoldi ROM via Arnoldi

[Linearization] [TS-SOAR]

TC3ld 1803 s 30.2 s (-98.3%) 13.7 s (-99.2%)

TC3md 1346 s 23.4 s (-98.3%) 13.8 s (-98.9%)

TC3hd 1796 s 20.4 s (-98.8%) 13.5 s (-99.2%)

The undamped noise transfer function for the fluid node, considering air as the

fluid medium backed by a fully clamped plate (see Table:[5.12]) is shown in Fig-

ure:[5.87]. The prediction error, considering the transfer function states, obtained

by ANSYS direct inversion and TSA projection framework is shown in Figure:[5.88].

It can be observed that the transfer functions via the TSA projection framework and

direct inversion are identical in terms of pressure amplitudes. Further, the dimension

of the ROM in this case is 11. i.e. the ROM matrices: Mrsa, Krsa are of dimensions

11 × 11. For the acoustically damped, free-free plate test case, the TS-SOAR pro-
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cess was used to generate the ROM. The resulting noise transfer function and the

subsequent local error is shown in Figures:[5.89,5.90]. In this test case, the dimen-

sion of the ROM (including Crsa) is 50. Compared to the fully clamped test case

with no acoustic damping, an increase in the number of Arnoldi vectors is evident.

This increase is primarily due to the boundary conditions of the structure, which in

turn influences the noise transfer function. An interesting observation can be made

from a modal view-point, that is, since the modal density of a free-free plate tends

to be higher than a clamped plate, more Arnoldi vectors are required to accurately

capture the low frequency dynamics of the coupled system.

The computational times required for the air filled rectangular cavity test cases,

are tabulated in Table:[5.15]. Note that in these test cases, the two-sided Arnoldi

variants (TSA and TS-SOAR) are tested for solution accuracy and computational

efficiency. The ROM timings include only the time required for the Arnoldi vector

generation, projection to second order form and reduced harmonic analysis. The

matrix extraction times are excluded due to the reasons mentioned earlier. It can

be seen that the computational times via ROM variants is almost negligible, when

compared to directly solving the system of equations.

Table 5.15.: A comparison of computational times for undamped and acoustically
damped air filled test cases.

Test Case ANSYS Direct ROM via Arnoldi Time Reduction

[TC3FFa] 1095 s 18.5 s 98.31%

(100%) (1.68%)

[TC3CLa] 1551 s 4.9 s 99.68%

(100%) (0.31%)
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Figure 5.87.: Predicted Noise Transfer Function (NTF) using direct and moment-
matching TSA projection for fluid node at (0.135m,0.07m,0.175m) for
the air filled, clamped plate model.
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Figure 5.88.: Error plot for ANSYS and TSA predicted Noise Transfer Functions
(NTF) for fluid node at (0.135m,0.07m,0.175m).
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Figure 5.89.: Predicted Noise Transfer Function (NTF) using direct and moment-
matching TSA projection for fluid node at (0.135m,0.07m,0.175m) for
the air filled, free-free plate model.
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Figure 5.90.: Error plot for ANSYS and TS-SOAR predicted Noise Transfer Func-
tions (NTF) for fluid node at (0.135m,0.07m,0.175m).
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5.5. Test Case: 4: Cylinder enclosing an air-filled

cavity

A steel cylinder is considered as the fourth test case to test the accuracy and effi-

ciency of the proposed Arnoldi based projection formulations. The cylinder has the

following dimensions: 1.01 m long, 0.18256 m radius, and 0.001219 m thick. The

steel has the following mechanical properties: Young’s modulus Es= 200 GPa, mass

density ρs=7800kg/m3, Poisson’s ratio υs=0.33. The cavity is filled with air having

the following properties: speed of sound c=343m/s, mass density ρc=1.2kg/m3. The

coupled system is excited using a normal unit point load defined in Figure:[5.91]. A

description of this test case can also be found in Tournour and Atalla (2000), Boily

and Charron (1999).

The cylinder is discretized using 32 4-node quadrilateral ANSYS SHELL63 along

the perimeter and 22 elements along the length. The cavity is discretized using 4-

node one DOF pressure elements (ANSYS FLUID30) with 32 mesh divisions along

the perimeter, 22 mesh divisions along the length, and 15 mesh divisions along the

diameter. Two variations of the test case are considered here: (a) Clamped and (b)

Free-Free. The coupled free-free FE/FE discretized model is shown in Figure:[5.92].

The desired output quantities considered for this test case are the fluid nodal pres-

sure values along the central axis of the cylinder. All three forms of damping are

considered for this test case: (a) undamped (b) constantly damped and (c) frequency

dependent, linearly varying structural damping. A description of the undamped and

damped test cases are tabulated in Table:[5.16].

The sparsity plot of the globally assembled higher dimensional stiffness, mass

and damping matrices for TC4FD2 is shown in Figures:[5.93,5.94, 5.95] respectively.

For Test Case: TC4FD2 (Table:5.16), two different Arnoldi variants are considered
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Table 5.16.: Damping values and Expansion points for One sided Arnoldi and TS-

SOAR Process for Test Case No.4 ‡ B.C’s: Boundary conditions.

B.C’s‡ Damped Test Cases Damping Value Expansion Point

Free-Free Undamped [TC4FF ] – 300Hz

Clamped Undamped [TC4CL] – 600Hz

Clamped Constant Damping [TC4CD1] βζ
j =0.05 550Hz

Clamped Constant Damping [TC4CD2] βζ
j =0.10 550Hz

Clamped Freq. Dependent [TC4FD1] βm
j =5.0E-05 600 / 600 Hz

Clamped Freq. Dependent [TC4FD2] βm
j =7.0E-05 600 / 600Hz

for dimension reduction: (a) Equivalent linearized system followed by One-Sided

Arnoldi (LIN-OSA) reduction and (b) Structure preserving, Two-Sided Second or-

der Arnoldi (TS-SOAR) reduction. The sparsity plot of the equivalent linearized

system is shown in Figures:[5.96, 5.97].
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Figure 5.91.: Test Case No. 4: Clamped Cylindrical cavity (air filled) sys-
tem - Structural Finite Element model. Excitation location:
(0.039m,0.14m,0.078m); Measurement location(s): 21 fluid grid points
along the central axis of the cylinder.

Figure 5.92.: Test Case No. 4: Free-Free Cylindrical cavity (air filled) system: Fully
Coupled FE model.
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Figure 5.93.: Test Case No. 4: Clamped Cylindrical cavity: Global Stiffness Matrix
sparsity plot.
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Figure 5.94.: Test Case No. 4: Clamped Cylindrical cavity: Global Mass Matrix
sparsity plot.
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Figure 5.95.: Test Case No. 4: Clamped Cylindrical cavity: Global Damping Matrix
sparsity plot
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Figure 5.96.: Test Case No. 4: Equivalent Linearized System (Equation:4.70a) Dsa

sparsity plot for βm
j =7.0E-05 [TC4FD2].
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Figure 5.97.: Test Case No. 4: Equivalent Linearized System (Equation:4.70a) Gsa

sparsity plot for βm
j =7.0E-05 [TC4FD2].

5.5.1. Computational Results and Discussion

For the undamped test cases described in Table:[5.16], the fluid acoustic noise trans-

fer function (for 21 fluid outputs along the central axis) are shown in Figures:[5.98,

5.101]. It can be seen that there is no visible difference between the RMS averaged

(reference pressure: 20E-06 N/m2) transfer functions (SPL) values, obtained using

the direct inversion technique and ROM via Arnoldi. The corresponding local er-

ror quantities are shown in Figures:[5.99, 5.102] respectively. The maximum error

for the RMS averaged sound pressure values is in the order of 10−2. Considering

SPL values, this means that the difference between direct inversion and ROM via

Arnoldi computed pressures is almost negligible. The convergence patterns in the

plots shown in Figures:[5.100,5.103] suggest that it is not possible to better approx-

imate the solution states by generating more than 100 vectors for the free-free test

case and 70 vectors for the clamped test case. The difference in the number of

vectors can be attributed to the boundary conditions (from a modal view-point,
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more modes are encountered with free-free boundary conditions) and the resulting

dimension of the higher dimensional states9.
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Figure 5.98.: Predicted RMS Averaged Fluid Noise Transfer Function using direct
and moment-matching Arnoldi projection utilizing 21 fluid pressure
outputs along the central axis of the undamped free-free cylinder
[TC4FF ].

The RMS averaged noise transfer functions for the constantly damped test cases

with ζ = 0.05 and ζ = 0.10 are shown in Figures:[5.104, 5.107]. Again, similar to

the undamped test case, it can be be observed that there is no visible difference

between the transfer functions, and the solution can be said to have converged for

the chosen outputs. The local error plots for the corresponding transfer functions in

Figures:[5.105, 5.109] indicate that the maximum error is in the order of 10−4. Ob-

viously, the higher accuracy of the damped solutions can be attributed to the fact

that the response is well smoothed (when compared with the undamped transfer

9The free-free model consists of 9223 (fluid+structure) DoFs, the clamped model 8839
(fluid+structure) DoFs. The reduction in DoFs for the same model is due to the introduction
of clamped boundary conditions accounted for as zeros in the structural FE model. Therefore,
the equations are deleted from the global structural-acoustic model resulting in a lower DoF
count.
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Figure 5.99.: Local RMS Averaged Error Plot utilizing 21 fluid pressure outputs
[TC4FF ].
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Figure 5.100.: Convergence pattern utilizing 21 fluid pressure outputs [TC4FF ].
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Figure 5.101.: Predicted RMS Averaged Fluid Noise Transfer Function using direct
and moment-matching Arnoldi projection utilizing 21 fluid pressure
outputs along the central axis of the clamped cylinder model [TC4CL].
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Figure 5.102.: Local RMS Averaged Error Plot utilizing 21 fluid pressure outputs
[TC4CL].
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Figure 5.103.: Convergence pattern for 21 fluid pressure outputs [TC4CL].

functions) in the case of a damped model. From a moment-matching viewpoint, the

higher accuracy could mean that the original higher dimensional model is stable.

This would mean that a damped structural-acoustic model is more stable than an

undamped model. Additionally, from the convergence plots shown in Figures:[5.106,

5.108] indicate that to achieve convergence, a reduced order model of 60 is required.

Therefore 60 Arnoldi vectors were generated for this test case.

For the frequency dependent damping models, the SISO Two-Sided Second Order

Arnoldi (TS-SOAR) and the first order based linearization (with OSA) framework

are investigated to generate the reduced order models. For the frequency dependent

damping model [TC4FD1], with βm
j =5.0E-05, the noise transfer function at the cen-

ter of the cylinder is shown in Figure:[5.110]. The local error plot (Figure:5.111) and

the convergence pattern (Figure:5.112) shows that no accuracy is lost by generat-

ing the ROM via TS-SOAR approach and that no more than 40 Arnoldi generated
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Figure 5.104.: Predicted RMS Averaged Fluid Noise Transfer Function using direct
and moment-matching Arnoldi projection utilizing 21 fluid pressure
outputs along the central axis of the clamped cylinder model [TC4CD1]
with ζ=0.05.
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Figure 5.105.: Local RMS Averaged Error Plot utilizing 21 fluid pressure outputs
for ζ=0.05.
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Figure 5.106.: Convergence pattern for moment-matching Arnoldi (OSA) projection
at 1Hz and 600Hz for ζ=0.05.
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Figure 5.107.: Predicted RMS Averaged Fluid Noise Transfer Function using direct
and moment-matching Arnoldi projection utilizing 21 fluid pressure
outputs along the central axis of the clamped cylinder model [TC4CD2]
with ζ=0.10.
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Figure 5.108.: Local RMS Averaged Error Plot utilizing 21 fluid pressure outputs
for ζ=0.10.

0 10 20 30 40 50 60 70 80 90 100
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Arnoldi Vector Number

Lo
g1

0:
 T

ru
e 

an
d 

R
el

at
iv

e 
E

rr
or

s 
at

 S
ta

rt
 a

nd
 E

nd
 F

re
qu

en
ci

es

 

 

True Error at 1Hz.
Relative Error at 1Hz.
True Error at 600Hz.
Relative Error at 600Hz.

Figure 5.109.: Convergence pattern for moment-matching Arnoldi (OSA) projection
at 1Hz and 600Hz for ζ=0.10.

207



5. Direct Projection via Krylov Subspaces: Numerical Test Cases.

vectors (for each subspace) are required for the solution state to be considered con-

verged. For the structural acoustic model with βm
j =7.0E-05, [TC4FD2], it can be

observed from Figure:[5.113] that both the linearization (with OSA) and TS-SOAR

projection framework generate accurate reduced order models. However, to achieve

convergence, the first order transformed model requires 200 Arnoldi generated vec-

tors, as shown in Figure:[5.115], (due to the introduced scaling to a first order

system), whereas, for the TS-SOAR framework, a ROM of dimension 40 seems to

be adequate for the considered output. For the linearization approach, an expansion

point of 600Hz (2×π×600) has been chosen for the analysis. The local error quanti-

ties shown in Figure:[5.114], although not directly visible in their respective transfer

functions (and thus negligible), indicate that the linearized Arnoldi approach gives

a higher degree of accuracy over the entire frequency range. On the other hand,

the TS-SOAR approach generates a ROM with higher accuracy around the chosen

expansion point (600Hz).

The computational times required to solve the higher dimensional problem via

direct and Arnoldi based dimension reduction techniques are shown in Table:[5.17].

The time required for ROM via Arnoldi is a combination of the time required to

generate the Arnoldi vectors, project the system to second order form and perform a

harmonic analysis on the reduced order model. It is worth mentioning that the time

required to generate and extract the relevant structural acoustic database files (Rud-

nyi and Korvink 2006) (similar to Table: 5.9) is excluded. For the test case described

in this section, the time required for matrix extraction is around 112 seconds. It can

be observed that the computational times are very consistent with different versions

of the test cases. The linearization approach (for Test Case: TC4FD2) results in a

drop of computational efficiency (by around 3%) due to the increased dimension of

the equivalent system (see Figures:5.96, 5.97) and the fact that more Arnoldi vectors
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Figure 5.110.: Predicted Noise Transfer Function (NTF) using direct and moment-
matching TS-SOAR projection for fluid node at the center of the
cylindrical cavity model [TC4FD1] with βm

j =5.0E-05.
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Figure 5.111.: Local Error Plot for fluid node at the center of the cylindrical cavity
with βm

j =5.0E-05.
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Figure 5.112.: Convergence plot for fluid node at the center of the cylindrical cavity
with βm

j =5.0E-05.
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Figure 5.113.: Predicted Noise Transfer Function (NTF) using direct and moment-
matching Linearized Arnoldi (OSA) and TS-SOAR projection for fluid
node at the center of the cylindrical cavity model [TC4FD2] with
βm

j =7.0E-05.
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Figure 5.114.: Local Error quantities for ROMs generated via moment-matching
Linearized OSA Arnoldi and TS-SOAR projection for fluid node at
the center of the cylinder with βm

j =7.0E-05.

0 20 40 60 80 100 120 140 160 180 200
−20

−15

−10

−5

0

5

10

Arnoldi Vector Number

Lo
g1

0:
 T

ru
e 

an
d 

R
el

at
iv

e 
E

rr
or

s 
at

 S
ta

rt
 a

nd
 E

nd
 F

re
qu

en
ci

es

 

 

True Error at 1Hz..
Relative Error at 1Hz.
True Error at 600Hz.
Relative Error at 600Hz.

Figure 5.115.: Convergence plot for moment-matching Linearized Arnoldi (OSA)
for fluid node at the center of the cylinder with βm

j =7.0E-05.
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were required to achieve convergence of the solution state.

As mentioned before, this test case has also been utilized to study accuracy and

convergence properties of the uncoupled modal superposition method in (Boily and

Charron 1999; Tournour and Atalla 2000). Note that Boily and Charron (1999) also

investigated the same cylindrical cavity with free-free boundary conditions. The au-

thors in their work demonstrated that even using 572 structural modes (using more

than one-quarter of the total number of degrees of freedom DOF) of their structural

model, the modal superposition technique did not reach convergence. The work

concluded that almost every structural mode should be retained in the modal basis,

which is often not possible for large models. Additionally, they concluded that the

1.2 (or even 2) × ωE criterion is not a reliable criterion for the problem at hand.

Tournour and Atalla (2000) investigated the same cylindrical cavity model with rigid

caps clamped at its ends. The authors of the work concluded that since the rigid

walled cavity mode and several elastic modes are almost orthogonal to the structural

modes, they can never be captured using the standard uncoupled modal synthesis

(coupling) technique (i.e. without taking into account the effect of dropped modes

via the application of pseudostatic correction factors). Indeed, there is no guarantee

that the computed modes included for the mode superposition via a modal analysis

would be enough (in other words, will participate in the dynamic response) for the

time/harmonic response analysis, and often an approximate guess of modes within

the 1.5−2n range are computed for projection, n being end frequency (Wilson et al.

1982; Boily and Charron 1999; Tournour and Atalla 2000).

Tournour and Atalla (2000) investigated the cylinder with rigid caps clamped at

its ends and applied pseudostatic corrections to the uncoupled modal basis method

to attain convergence. The computational times described in Tournour and Atalla

(2000) are compared with the Arnoldi approaches in Table:[5.18]. Although no ex-
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plicit machine specifications were included in the published paper, it can be observed

that the solution times for the direct inversion technique are nearly the same (6420

sec. - 90.4%), (7100 - 100%) and therefore can be used as guide to compare solution

times with Arnoldi approaches10. When compared to the uncoupled modal basis

approach (with pseudostatic corrections), Arnoldi approaches seem to increase the

reduction in solution times by around 6%. This is of course, including the time

required to extract the higher dimensional structural acoustic system (156.9 sec).

Assuming that the computational time consists of simply generating the required

Arnoldi vectors, projection to second order form and a reduced harmonic analysis

(total of 74.1 sec), the reduction in solution times is around 9%.

Table 5.17.: A comparison of computational times for undamped and damped test
cases.

Test Case ANSYS Direct ROM via Arnoldi Time Reduction

[TC4FF ] 3988 s 16.4 s 99.5%

[TC4CL] 3608 s 16 s 99.5%

[TC4CD1] 7100 s 74 s 98.9%

[TC4CD2] 7119 s 76.1 s 98.9%

[TC4FD1] 4201 s 95.1 s 97.7%

[TC4FD2] 4719 s 88.2 s 98.1%

Linearization 160.5 s 96.5%

10Note that in this thesis, for this test case, a frequency sweep (for FRF computation) is executed
over the frequency range of 0-600Hz, whereas, in Tournour and Atalla (2000) the frequency
range for FRF computation is 0-500Hz.
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Table 5.18.: A comparison of computational times with uncoupled modal superpo-
sition § (Tournour and Atalla 2000).

Test Case Direct ROM Time Reduction

Cylindrical Cavity 6420 s 587 s [MSP] 90.85%

Model§ [5988 DOF] 617 s [MSP+Corrections] 90.38%

[TC4CD1] 7100 s 231 s (74.1 s) [Arnoldi] 96.74%

[8839 DOF] (98.9%)
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5.6. Test Case: 5: Demonstrator Structure

A simplified vehicle structure, made up of simple beams and plates was generated

to provide a more complex test case for the solution of fully coupled undamped

systems using MOR based on the Arnoldi algorithm. This solution method was

also compared with a harmonic analysis using the direct LU solution method in

ANSYS. The FE structural model was divided into seven areas. Two of these areas,

which corresponded to the vehicle roof, and front firewall, were meshed using four

noded quadrilateral shell elements (ANSYS SHELL181), with six degrees of freedom

(UX,UY,UZ,ROTX,ROTY,ROTZ) at each node. The structural model is shown in

Figure:[5.117].

The mechanical properties of the structural elements are as follows: Young’s

Modulus Es= 200 GPa, mass density ρs=7800kg/m3 and Poisson’s ratio υs=0.33.

The enclosed cavity is filled with air with the following properties: speed of sound

c=343m/s and mass density ρc = 1.2kg/m3. A total of 692 structural elements - a

combination of beam and shell elements, were found to be sufficient to capture the

dynamic behavior of the structural model. In this simplified model, the joints were

assumed to be rigid. The acoustic model was modeled using eight noded acoustic

brick elements (ANSYS FLUID30), with one pressure degree of freedom at each

node. The coupled model is shown in Figure:[5.118]. The structural and acoustic

model were coupled using the ANSYS Fluid Structure Interaction (FSI) flag, which

in turn creates the wetted surface carrying the additional pressure DOF for nodes

on the specified fluid-structure interface. Faces other than the roof and the firewall

were assumed to be fully reflective i.e. rigid walls. The panel thickness range from

1.75-2mm. The coupled model was excited using a constant structural point force of

1N over the entire frequency range of 0-300Hz at one of the nodes on the front struc-

tural member as shown in Figures:[5.116,5.117, 5.118]. In this case study, the beams
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have been ignored for the coupled model i.e. the wetted surface was not created for

the elements belonging to the faces of the beam. The output nodes considered for

this test case was representative of front left driver’s ear location (0.332m, 0.38m,

0.249m) and at (0.766m, 0.452m, 0.249m). The dimension of the coupled higher

dimensional system is 10264.

Table 5.19.: Damping values and Expansion points for One sided Arnoldi Process

for Test Case No.5

Test Cases Damping Value Expansion Point

Undamped [TC5UD] – 75Hz, 150Hz and 300Hz

Constant Damping [TC5CD] ζ=0.04 300Hz

Figure 5.116.: Test Case No. 5: Beam-Plate model structure. Excitation
location: a1 = (0, 0, 0.2m); Measurement location(s): b1 =
(0.332m, 0.38m, 0.249m), c1 = (0.766m, 0.452m, 0.249m).
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Figure 5.117.: Test Case No. 5: Structural FE Model.

Figure 5.118.: Test Case No. 5: Fully coupled structural-acoustic FE Model.
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5.6.1. Computational Results and Discussion

For the undamped test case,[TC5UD], 150 vectors were generated using the SISO /

SICO Arnoldi algorithm implemented in Mathematica. The noise transfer functions

at the fluid nodes representative of the drivers ear location (0.33m,0.38m,0.24m) and

at (0.76m,0.45m,0.24m) are shown in Figures:[5.119, 5.120]. Similar to other test

cases shown in this thesis, it can be observed that there is no visible difference in the

noise transfer functions obtained via the direct inversion method and the Arnoldi

based projection formulation. For the MOR via Arnoldi approach, again, three

different expansion points have been chosen: f 1
exp=75Hz; f 2

exp=150Hz; f 3
exp=300Hz.

The corresponding local error for all three expansion points and the true, relative

errors are shown in Figures:[5.121,5.122] and Figure:[5.123] respectively. In this case,

The convergence pattern indicates that to approximate the coupled system to the

required level of accuracy required no more than 115 Arnoldi generated vectors at

approximately 1Hz and 130 Arnoldi generated vectors for 300Hz.
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Figure 5.119.: Test Case No. 5: Predicted Noise Transfer Function using di-
rect and moment-matching Arnoldi projection for fluid node at
(0.332m,0.38m,0.249m).
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Figure 5.120.: Test Case No. 5: Predicted Noise Transfer Function using di-
rect and moment-matching Arnoldi projection for fluid node at
(0.766m,0.452m,0.249m).

For the constantly damped test case, [TC5CD], the convergence pattern in Fig-

ure:[5.126] indicate that around 120 Arnoldi vectors are required for the solu-

tion states to converge. The RMS averaged noise transfer functions at the fluid

nodal grid locations representative of the drivers ear location (0.33m,0.38m,0.24m),

(0.76m,0.45m,0.24m) and at (0.86m,0.45m,0.29m) is shown in Figures:[5.124]. It can

be observed that there is no visible difference in the RMS averaged noise transfer

functions obtained via the direct inversion method and the Arnoldi based projection

formulation. For the MOR via Arnoldi approach, the coupled higher dimensional

system was factorized at 300Hz The corresponding local error for the damped test

case is shown in Figure:[5.125]. Similar to the observation from the other test cases

shown in this work, it can be observed that the errors for the constantly damped

test cases are lower than the undamped test cases. Further, fewer number of Arnoldi

vectors seem to be required to achieve convergence when compared to the undamped

problem.
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Figure 5.121.: Test Case No. 5: Noise Transfer Function error plot for fluid node
at (0.33m,0.38m,0.24m) for f 1

exp=75Hz; f 2
exp=150Hz; f 3

exp=300Hz.
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Figure 5.122.: Test Case No. 5: Noise Transfer Function error plot for fluid node
at (0.76m,0.45m,0.24m) for f 1

exp=75Hz; f 2
exp=150Hz; f 3

exp=300Hz.
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Figure 5.123.: Test Case No. 5: Convergence pattern for Arnoldi vectors
(f 2

exp=150Hz) at approximately 1Hz and 300Hz.

The computational times required to compute an automatic ROM via Arnoldi

(with an expansion point of 300Hz) is shown in Table:[5.20]. all computations are

driven by MATLAB. Note that the matrix extraction times are added to the cal-

culation. The total cost of generating the required Arnoldi vectors, projection and

reduced harmonic analysis are shown in brackets. When compared to the direct

inversion technique, it can be seen that the reduced order model gives a significant

reduction in computational time (94.47% and 88.27%) for both test cases. If the

higher dimensional matrix extraction times are excluded (as would be the case in a

commercial FE environment), the time reduction increases to 99.03% and 94.05% for

the undamped and damped computations respectively. The computations described

in this section were performed on [Me2].
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Figure 5.124.: Test Case No. 5: RMS averaged Noise Transfer Function
for fluid nodes at (0.766m,0.452m,0.249m), (0.33m,0.38m,0.24m),
(0.86m,0.45m,0.29m).
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Figure 5.125.: Test Case No. 5: RMS averaged Noise Transfer Function error
plot for fluid nodes at (0.766m,0.452m,0.249m), (0.33m,0.38m,0.24m),
(0.86m,0.45m,0.29m).
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Figure 5.126.: Test Case No. 5: Convergence plot for Arnoldi vectors at approxi-
mately 1Hz and 300Hz.

Table 5.20.: A comparison of computational times for undamped and damped Test
Case No. 5.

Test Case Direct ROM Time Reduction

Undamped [TC5UD] 1905 s 105.3 s (18.3s) 94.47%

(99.03%)

Constant Damping [TC5CD] 1581 s 185.3 s (94 s) 88.27%

(94.05%)
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5.7. Test Case: 6: Demonstrator Structure: Adhesive

Bonded Joint

It is well known that the modeling of joints, gaps and sealants in a vehicle or an

aerospace FE model leads to better vibro-acoustic prediction accuracy over the entire

frequency range. However, one of the major challenges facing CAE modeling of

joints is also to efficiently balance the requirement for accuracy with the need for

maintaining reasonable vehicle FE model sizes and computer run time (DTI 2004).

Therefore, in this test case, an adhesive bonded panel-frame structure is considered

to validate the accuracy of Arnoldi based projection formulations. The model is

a detailed coupled FE/FE model of the demonstrator structure, which was built

to test different modeling techniques. For this test case, one of these areas, which

corresponded to the vehicle roof, was meshed using four noded quadrilateral shell

elements (ANSYS SHELL181), with six degrees of freedom at each node. The

roof panel is bonded to the beams, using SOLID45 elements the solid-shell macro

modeling approach (Durodola et al. 1999; Aruleswaran 2001):

t̃FEA =

∑
t̃plates

2
+ t̃adh (5.2a)

ẼFEA =
Ẽadh

t̃adh

× t̃FEA (5.2b)

where, t̃FEA, is the modified bond line thickness for the structural finite-element

model, t̃plates are the thickness of the adherents, t̃adh is the actual thickness of the

adhesive bond, ẼFEA is the modified modulus11 value for the structural finite-element

model and Ẽadh is the actual modulus value of the adhesive.

The mechanical properties of the structural elements are as follows: Young’s

11Note that both static and dynamic modulus could be used in the structural finite element model
for the adhesive (Aruleswaran 2001).
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Modulus Es= 200 GPa, mass density ρs=7800 kg/m3 and Poisson’s ratio υ=0.33.

The enclosed cavity is filled with air with the following properties: speed of sound

c=343m/s, mass density ρc=1.2kg/m3. Two different adhesives, Epoxy Betamate

5318-4 and Polybutadiene Terostat 3218F are considered for analysis. The mechani-

cal properties of the adhesives, obtained from tensile tests and Dynamic Mechanical

Thermal Analysis (DMTA) of small scale adhesive samples are shown in Table:[5.21].

Note that the modulus and bond line thickness are modified for use in the struc-

tural part of the coupled finite element models as per Equations:[5.2a,5.2b]. The

distribution of elements in the finite element coupled model areas follows: 4472

structural (4258 SHELL 181 and 214 SOLID45 for the adhesive bond) elements, 740

acoustic interface elements (FLUID30) along the fluid-structure interface and 32742

acoustic elements (FLUID30) not in contact with the structure. The coupled model

was excited using a unit point force excitation at (x, y, z)=(1.45m,0, 0.15m). The

structural and the coupled model are shown in Figures:[5.127,5.128]. The fluid node

at (x, y, z)=(0.9m,0.5m,0.08m) is considered as the output for the coupled analysis.

A description of the test models considered for the coupled analysis are described

in Table:[5.22]. Note that for models TC6BM and TC6TT , in addition to an overall

structural damping ratio, specific material damping is also specified for adhesive

(structural) elements.

5.7.1. Computational Results and Discussion

For the constantly damped test cases: TC6BM and TC6TT , the two-sided Arnoldi

(TSA) process was chosen to test the accuracy of Krylov subspace based moment

matching techniques. Note that these two models carry a frequency independent

damping for the adhesive materials in addition to a constant structural damping

of 3%. i.e. local damping exists in addition to overall structural damping. The
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Figure 5.127.: Test Case No. 6: Struc-
tural model with adhesive
bond (pink elements).

Figure 5.128.: Test Case No. 6: Coupled
Structural-Acoustic model.

Table 5.21.: Dynamic material properties of the adhesives (averaged at 20-30 de-
grees, f =90Hz) considered for the vibro-acoustic analysis (Aruleswaran
2001).

Adhesive Density Thickness Modulus Loss Factor

[Kg/m3] [mm] [Gpa] [η]

Epoxy Betamate 5318-4 1380 0.51 1.44 0.0559

TC6BM

Polybutadiene Terostat 3218F 1500 0.51 0.0142 0.5319

TC6TT ,TC6Tac

Table 5.22.: Damping values and Expansion points for Two sided Arnoldi Processes

(TSA, TS-SOAR) for Test Case No. 6.

Test Cases Damping Value Expansion Point

[TC6BM ] η=0.0559, ζ=0.03 TSA: 150Hz

[TC6TT ] η=0.5319, ζ=0.03 TSA: 150Hz

[TC6Tac] βac=0.1 TS-SOAR: 150Hz
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resulting coupled structural-acoustic models are of dimension is 62,354. The num-

ber of equations are indeed very large and a LU factorization of this system cannot

be performed12 on a 32 bit environment using standard numerical packages such as

MATLAB and Mathematica. However, since the test case aims to validate simply

the accuracy of the projection formulations, the results presented here arise from

computations carried out using Mathematica on a 64 bit environment.

The noise transfer function for the specified fluid output at (x, y, z) =

(0.9m,0.5m,0.08m) for both adhesive models (TC6BM ,TC6TT ) are shown in Fig-

ure: [5.129]. The local error quantities in the frequency domain are shown in Fig-

ure:[5.130].The corresponding convergence plots for the start and end frequencies

considered for the coupled analysis are shown in Figures:[5.131,5.132]. The conver-

gence plots indicate that a dimension of 90 for the ROM yields very good approxi-

mation properties. Indeed, the comparison between an ANSYS direct inversion and

TSA projections show that the transfer functions are identical13. From an engi-

neering viewpoint, the noise transfer functions obtained by modeling the Betamate

and Terostat adhesives, demonstrate that using a low modulus adhesive with higher

damping value yields a slightly better acoustic response for the chosen node. The

amplitude of pressure close to the fluid resonance peak at 120Hz have decreased

by the use of a higher damping adhesive. Similar lower pressure amplitudes are

apparent around 170-225Hz and 280-300Hz frequency bands. The sparsity plots for

the higher dimensional coupled system matrices (Figures:C.1,C.2,C.3), and a com-

parison of the noise transfer functions (Figures:C.4,C.5) with the direct inversion

technique can be found in Appendix:(C). Note that the importance of choosing a

particular node for characterizing the interior acoustic behavior evaluation is of-

ten questioned in literature (Marburg 2002a), but it is also the most common form

12An attempt to LU factorize Ksa for this test case in MATLAB fails due to memory requirements
on a 32 bit environment. This well known drawback is associated with the scalability issues of
such commercially available packages like Matlab or Mathematica.

13This can be observed from Figures:[C.4,C.5] in Appendix:(C).
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for objective function evaluations in vibro-acoustic optimization studies (Marburg

2002a; Marburg et al. 1997; Marburg 2002b).
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Figure 5.129.: Test Case No. 6: Predicted Noise Transfer Function using direct
and moment-matching Two Sided Arnoldi projection for fluid node
at (0.9m,0.5m,0.08m) for adhesively bonded coupled models [TC6BM ]
and [TC6TT ].

The noise transfer functions obtained by direct inversion and structure preserving

TS-SOAR process for the acoustically damped model [TC6Tac] is shown in Fig-

ure:[5.133]. The corresponding local error quantities and the convergence models in

the frequency domain for the start and end frequencies are shown in Figures:[5.134,

5.135]. The convergence plots indicate that around 70 vectors are enough for the

solution state to converge. Once again, it can be observed that no accuracy is lost

by employing structure preserving moment matching formulations. Note that in

this test case, no structural damping was specified. This was carried out in order to

validate the proposed techniques on coupled structural-acoustic models that yield

transfer functions of a mixed nature. Since the model is only acoustically damped,

228



5. Direct Projection via Krylov Subspaces: Numerical Test Cases.

0 50 100 150 200 250 300
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency [Hz]

E
rr

or
: [

(
A

N
S

Y
S

−
A

R
N

O
LD

I)
/

(
A

N
S

Y
S

)
]

 

 

Error Model wi h Betamate Adhesive:TC6BM 

Error Model wi h Betamate Adhesive:TC6TS 

Figure 5.130.: Test Case No. 6: Noise Transfer Function error plot for fluid node
at (0.9m,0.5m,0.08m) for adhesively bonded coupled models [TC6BM ]
and [TC6TT ].
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Figure 5.131.: Test Case No. 6: Convergence plot for Arnoldi vectors at approxi-
mately 1Hz and 300Hz for the coupled model with Betamate adhesive
[TC6BM ].
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Figure 5.132.: Test Case No. 6: Convergence plot for Arnoldi vectors at approxi-
mately 1Hz and 300Hz for the coupled model with Terostat adhesive
[TC6TT ].

most structural peaks would remain undamped (the test case is weakly coupled),

whereas reduction in pressure amplitudes can be expected at frequencies close to

the acoustic resonant frequencies. This phenomenon is shown for this test case

[TC6Tac], by comparing the noise transfer function from an undamped and acousti-

cally damped computation in Appendix:(C).

As mentioned earlier, since an LU factor could not be computed (in Mathemat-

ica or Matlab) using [Me1],[Me3], the computations described in this test case were

carried out on [Me4], Intel Xeon 3.80GHz, 64bit, 10GB RAM machine with 64bit

Mathematica and Matlab. It is worth reminding the reader that in the case of an

uncoupled or a coupled modal analysis for modal type projections, the memory re-

quirements for a given model is higher with modal projections than with the direct

inversion method. On the other hand, the memory requirements for the direct inver-

sion method is much smaller but however requires longer solution times. Therefore,
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in a modern computing environment, speed and not memory is the limiting fac-

tor on the computation of coupled responses (with small sub-steps) in the time or

frequency domain (PADT 2006).
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Figure 5.133.: Test Case No. 6: Predicted Noise Transfer Function using direct
and moment-matching Two Sided Second order Arnoldi (TS-SOAR)
projection for fluid node at (0.9m,0.5m,0.08m) with constant acoustic
damping [TC6Tac].
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Figure 5.134.: Test Case No. 6: Noise Transfer Function error plot for structural
acoustic model [TC6Tac].
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Figure 5.135.: Test Case No. 6: Convergence plot for Arnoldi vectors at approxi-
mately 1Hz and 300Hz for Terostat adhesive with constant acoustic
damping [TC6Tac].
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6. Structural Acoustic Optimization

via Krylov Subspace Techniques

It is clear from existing literatures (Belegundu et al. 1994; Marburg 2002a; Fernholz

and Robinson 1998; Niyogi et al. 2000) that in order to improve the acoustic char-

acteristics of a vehicle or a aerospace cabin interior, numerical optimization is often

employed. Since there exists two forms of solution (coupled and uncoupled), it is

often left to the engineer to decide on the approach best suited to the problem un-

der investigation. As mentioned earlier, however, a one-way coupled scheme via the

FEM/FEM or FEM/BEM type chained approach analysis ignores the fluid loading

on the structure, which is often the cause of cavity boom at low frequencies. In addi-

tion to this, there is often a degree of uncertainty in classifying a structural acoustic

system (such as an automotive or an aerospace interior) as weakly or strongly cou-

pled (Desmet 1998; Bregant et al. 2005). Therefore, a fully coupled analysis is often

preferred in many vehicle/aerospace applications, but the computational effort re-

quired to directly solve Equation:[3.42] restricts its subsequent use.

Over the recent years, different novel materials have been developed to control

noise and vibration in vehicles and commercial aircraft. In particular, fiber rein-

forced composites have generated significant interest in the development of structural

materials due to their low density, high stiffness and excellent damping characteris-

tics. However, the coupled structural-acoustic problem is complicated if the flexible
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structural portion are built of thin laminated composite plates since they interact

with the acoustic field in their own strange manners (Niyogi et al. 2000). Addition-

ally, the orthotropic nature of such fiber reinforced composite materials implies that

the directional stiffness depends on the orientation of fibers. Such flexibility can

often be exploited to tailor the material to obtain the required structural acoustic

performance (Fernholz and Robinson 1998). In this work, the feasibility of reducing

interior noise levels through optimal lamination angles of a composite plate structure

via dimension reduction is demonstrated.

6.1. Strategy for Design Optimization

Obviously, in order to asses the suitability of a particular design, vibro-acoustic

analysis is performed. Evaluation of the objective function via the most accurate

direct inversion method is expensive. If a modal basis is used to compute the ob-

jective function, it is well known that sacrifices in accuracy and damping have to

be made. Aside from these computational complications, it is also desirable to

retrieve efficiently, using as few as possible function evaluations, the desired vibro-

acoustic behavior (e.g. decreased sound pressures or structural displacements at

certain points in the acoustic or the structural domain) of the system under investi-

gation. This may be achieved, for example, by direct optimization of the objective

function using gradient based optimization algorithms, which essentially fall under

two categories: (a) forward finite difference scheme and (b) central finite difference

schemes. Once the gradient is known, methods such as feasible directions (known

as steepest descent) can be applied to update the vector of design variables. In the

line-search algorithm, the updated vector of design variables, λk+1, is evaluated as

follows (Haftka and Gurdal 1992):

λk+1 = λk + σd (6.1)

234



6. Structural Acoustic Optimization via Krylov Subspace Techniques

where, σ represents the step-size, and d represents the gradient. These schemes,

although straightforward to implement, suffer from inefficiencies when there are a

large number of design variables to be optimized and inaccuracies when sensitivities

are calculated near resonant frequencies (Salagame et al. 1995). In addition to this,

a small enough step size should be chosen, since the sensitivities strongly depend on

the specified step size. Therefore, the lack of accurate gradient information, conver-

gence into local optimum hampers the effectiveness of the gradient based optimiza-

tion approach. It is worth noting that, to speed up the sensitivity computations,

the adjoint variable method could be utilized. For detailed mathematical deriva-

tions for non-symmetric matrices and applications of the adjoint variable method

for structural-acoustic optimization, the reader is referred to Choi (2004), Dong and

Kim (2003), Kim et al. (2004), Kim et al. (2003). Marburg (2002a) acknowledged

the fact that random searches had to be carried out at different stages of a first order

gradient based vibro-acoustic optimization (available within ANSYS), in order for

the optimizer to escape local minima. It is therefore beneficial to apply gradient-free

global search methods, such as genetic algorithms and pattern search, besides the

gradient based optimization algorithms. In general, the aim of such gradient-free

algorithms is to somehow exhaust the design space.

Mathematically speaking, two different optimization problems can be stated, as

follows:

(A) Baseline Formulation:

Find a vector of design variables : θ = (θ1, θ2, θ3....θn) (6.2)

which minimizes the objective function : f(θ),

subject to lower and upper bounds : θlower
i ≤ θi ≤ θupper

i (6.3)
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where, the objective function f(θ) is the absolute pressure at any given location(s)

and the lower and upper bounds on the design variables are given by θlower
i and θupper

i .

(B) Structural Weight Constraint Formulation:

Find a vector of design variables : θ = (θ1, θ2, θ3....θn) (6.4)

which minimizes the objective function : f(θ),

subject to lower and upper bounds : θlower
i ≤ θi ≤ θupper

i (6.5)

subject to constraint :

(
1− Winitial

Wfeasible

)
≤ 0 (6.6)

where, the constraint function can be written as given by Equation:[6.6], such

that the structural weight does not exceed a user specified value. The constraint is

essentially fulfilled when the weight of the new design, obtained by the optimizer

does not exceed the initial structural mass. Such a formulation is often utilized when

the thickness of the structural model is formulated as an additional design variable.

Similar to the weight formulation, an alternate variation of the formulation could

be proposed, where the pressure values at various location can be set not to exceed

a specified value. Mathematically speaking, Equation:[6.6] can be modified as:

Subject to constraint :

(
1− SPLrms initial

SPLrms feasible

)
≤ 0 (6.7)

where, a constraint function can be written as given by Equation:[6.7], such that

the sound pressure values do not exceed a user specified value at certain grid loca-

tions in the fluid domain. For example, an optimization could be performed, where

the objective function is to minimize sound pressure level at a drivers ear location,

whilst specifying an acoustic constraint such that the pressure values at the passen-

gers ear location do not exceed a user specified or the initial values. However, such
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a formulation assumes that the sound field of the original design is well known, and

target frequency bands have been identified, where pressure levels are desired to be

reduced. Obviously, a natural question is also to include the constraint calculation

location to the objective function, thereby minimizing pressure values at both loca-

tions.

It is worth reminding the reader that instead of minimizing the total mass of the

structural model, an alternate formulation can be proposed, where the objective

function takes the form of minimization of structural mass, whilst fulfilling certain

acoustic pressure constraints. In such a case, the objective of the design modifica-

tion is primarily to minimize structural mass and therefore is not considered for the

current study.

Since the noise levels are quantified in terms of the noise transfer function at

discrete nodal locations, some form of averaging is essential to arrive at a single

objective function value for the entire frequency range. If a simple average is uti-

lized, then no distinction is made between the peaks and the troughs of the transfer

function. However, it is well known that the peaks of the transfer function occur

at discrete frequencies, which are often sought to be reduced. Another possibility is

to simply minimize the maximum response of the original design. Numerous possi-

bilities exist to formulate the objective function, and their effectiveness depends on

the nature of the coupled problem. For the optimization problem stated above, the

objective function is formulated as (Marburg 2002b; Marburg and Hardtke 2002):

fθ = f̆
1
n
θ (6.8a)

f̆θ =
1

ωmax − ωmin

∫ ωmax

ωmin

ϑ{pl(ω)}dω (6.8b)
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ϑ{pl} =

 (pl − pref )
n pl > pref

0 pl ≤ pref

 (6.8c)

where, the function ϑ is a weighting function applied to the nodal sound pressure

level (SPL) value, {pl(ω)}. It can be seen that the weighting function depends on

reference pressure, pref .

At this point, note that any value of pref can be used and is used as a control

parameter to take into account the peaks of a noise transfer function . For n = 2,

this formulation of objective function, given by Equation:[6.8a] results in a frequency

averaged root mean square value. This ensures that the higher peaks of the noise

transfer function are given more importance, avoiding deep valleys as compensations

for high peaks during the optimization process (Marburg 2002a). For n = 1, the

formulation results in a mean value, where pref controls the values to the taken into

account for optimization.

It was demonstrated in Section:[5], that moment matching techniques provide an

excellent alternative to other known methods for fully coupled structural-acoustic

analysis. Therefore, the reduced order modeling technique outlined in Section:[4]

is incorporated into the optimization process to speed up simulation time, while

maintaining the accuracy of the nodal sound pressure values. A general framework

of optimization via dimension reduction is given in Figure:[6.1]. In contrast to tra-

ditional methods such as direct inversion or modal superposition via uncoupled or

coupled modes, the work computes the desired objective function via moment match-

ing techniques. In some sense, since this is the first application of moment matching

methods to optimization, various known configurations are checked for accuracy via

the direct method available within ANSYS. Note also that since it is the lamination

angles which this study seeks to optimize, and thus the material properties of the

composite structure, the reduced order model must be regenerated at each iteration
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involving a change in the lamination angle.

Each function evaluation in the optimization loop consists of the following fully

automated steps: First, a solid model is generated from a 2D profile of the demon-

strator structure. A fluid volume mesh followed by a structural surface mesh is then

generated, and the two-way coupling between the fluid and structural domains are

enforced using the ANSYS FSI flag. Appropriate boundary conditions and loads

are applied, which in this case are rigid walls for fluid elements not in contact with

the structure and unit point force at structural node(s) of interest. Next, the ma-

trices [Ksa], [Msa], [Fsa], [Lsa] are extracted and order reduction is performed via the

Arnoldi process to match sufficient number of moments of the coupled system matri-

ces. A harmonic analysis is then carried out in the desired frequency range using the

reduced system matrices [Krsa], [Mrsa], [Frsa], [Lrsa]. The RMS SPL at driver’s ear

location is computed according to Equation:[6.8a] as a part of the post-processing

step. It is worth mentioning that the entire optimization loop was driven by MAT-

LAB using simple input/output text files to read and write function values.

The optimization is carried out using MATLAB GAPS Toolbox (Matlab 2006)

where function calls are made to Mesh Adaptive Direct Search (MADS) algorithm.

In what follows, an outline of the MADS algorithm and its advantages over GPS

discussed.
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Figure 6.1.: General framework for vibro-acoustic optimization via conventional and
suggested techniques.
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6.2. LHS / Mesh Adaptive Direct Search Algorithm

In terms of optimization methods for computing the best design variables, the gen-

eralized pattern search (GPS) methods offer the advantage of a flexible framework

for problems with no available gradient information. At the same time, they also

provide strict mathematical convergence properties for the expensive function. The

convergence of pattern search methods has been studied extensively by Torczon

(1997), Audet and J. E. Dennis (2002), Audet and J. E. Dennis (2004). Con-

vergence properties and results for optimization problems with bound, linear and

nonlinear constraints have been derived by Lewis and Torczon (1999), Lewis and

Torczon (2000), Lewis and Torczon (2002). However, one of the key drawbacks of

the GPS algorithm is that local exploration of the space of variables is restricted to

a finite number of fixed directions (called poll directions), which could result in slow

convergence. The recently proposed mesh adaptive direct search (MADS) method

(Audet and J. E. Dennis 2006), overcomes this restriction by generating a dense set

of local polling directions. MADS is an iterative class of derivative free, frame based

algorithms, specifically designed for non-smooth optimization problems, and in gen-

eral can be seen as an extension to the GPS algorithm. A successful application of

MADS for aeroacoustic noise optimization can be found in Marsden (2004).

Each iteration of MADS is divided into two steps, SEARCH and POLL. The

SEARCH step allows the evaluation of the objective function at a finite set of points.

Any search strategy can be used, including none, in which case the SEARCH is said

to be empty. A lot of flexibility is available within this SEARCH step and is free of

rules except for the fact that the trial points must lie within the search space and

are finite. The set of trial points considered for function evaluation is called a mesh,

and is governed by the mesh parameter ∆m
k . If SEARCH fails to find an improved

point, then POLL is executed, and if the POLL step also does not succeed, then
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the mesh is refined. When a SEARCH step fails to improve the objective function

value, a POLL step is invoked, before terminating the current iteration. The key

difference between GPS and MADS lies in this POLL step. In addition to the mesh

size parameter ∆m
k , a poll size parameter ∆p

k is defined to ensure that the local

exploration of the design variable space is not restricted to a finite set of directions

(Marsden et al. 2004). In this way, at every iteration, the mesh size parameter ∆m
k

is always much smaller than the poll size parameter. Therefore, when a POLL is

successful, the mesh decreases gradually when compared to the GPS algorithm. The

set of trial points considered during the POLL step is called a frame. The frame is

constructed using the current design point, called the frame center and the mesh,

poll size parameters, ∆p
k and ∆m

k to obtain a positive set of directions (stored in

columns of the direction matrix), where each column represent the set of search

directions. Simple examples of MADS polling construction for n + 1 and 2n basis1

can be found in Marsden (2004), Matlab (2006).

As a result of the POLL step, design variables neighboring the current best de-

sign variable on the mesh are evaluated. This guarantees the convergence of MADS.

Depending on the result of the POLL step, i.e. successful or unsuccessful, the mesh

resolution is decreased or increased. Note that by refining the mesh, it is possible

to obtain a dense set of polling directions which in turn means that as the mesh

becomes infinitely fine, one approaches to be able to poll (i.e. generate design points

and compute objective function) in any desired direction. If the POLL step gener-

ated an improvement of the objective function, then a SEARCH step is performed

on the current mesh with updated ∆m
k+1 and ∆p

k+1. Otherwise, the current design

variable is said to be the local minimizer on the current mesh. It is worth men-

tioning that the mesh is in fact conceptual and is never actually constructed. An

outline of the general MADS algorithm is shown in Figure:[6.2]. For a detailed dis-

1Here, n is the number of POLL directions.
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cussion of convergence analysis and employing rules to compute frame and mesh

refinement, the reader is referred to Audet and J. E. Dennis (2006), Abramson and

Audet (2006).

The first step in the optimization is to choose a set of initial data. Latin hy-

percube sampling (LHS), introduced by McKay et al. (1979), is commonly used

to find a well distributed set of initial data in the parameter space, thus ensuring

that each input variable has all portions of its range represented in the chosen data

set. To choose a sample set of m vectors in the parameter space, each dimension

is divided into m subintervals, and a point within each subinterval is selected (this

is often done by randomly sampling from a uniform distribution over the subinter-

val). The sample set is then obtained by randomly grouping these points to form

vectors. Consequently, for each dimension, each interval appears exactly once in the

set. Once the initial data set x1, . . . , xm has been chosen, the cost function f(θ)

is evaluated at these points.

LHS offers flexible design sizes n (number of scenarios simulated) for any number

of simulation inputs, k. Given a value for n, a LHS is typically constructed as follows

(Kleijnen 2005):

(a) First LHS divides each input range into n intervals of equal (or chosen) length,

numbered from 1 to n.

(b) Next, LHS places these integers 1, . . . , n such that each integer appears exactly

once in each row and each column of the design.

(c) Within each cell of the design in the table, the exact input value may be

sampled uniformly or randomly.

(d) The values are then scaled to fit the boundary of the design variables2.

2In MATLAB, the command: lhsdesign(n,p,’maximin’) generates a latin hypercube sample X
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Generally speaking, LHS assumes that an adequate meta-model is more compli-

cated than a low- order polynomials which are assumed by classic designs such as

fractional factorials (Kleijnen 2005). LHS, however, does not assume a specific meta-

model or simulation model. Instead, LHS focuses on the design space formed by the

k dimensional unit cube defined by the k standardized simulation inputs, given by:

0 ≤ di;j ≥ 1 (6.9)

where, i = 1, . . . n and j = 1, . . . k. Therefore, the approach can be seen as a one-

shot, space-filling design. For a description of the algorithm used to generate LHS

design points and a review of associated software implementation, the reader is re-

ferred to Koehler and Owen (1996), Giunta (2002), Giunta et al. (2003).

In order to avoid getting trapped in a local minima, in this work, we chose to

evaluate initial trial points in the first iteration of MADS using 100 runs from sam-

ple points generated using Latin Hypercube Sampling (McKay et al. 1979), with a

criterion of maximizing the minimum distance between design variables. The best

design variable thus obtained, is then passed on to MADS. Note that it is only in

the first iteration of the SEARCH step a LHS is required.

containing n values on each of p variables with a maximin criterion. For each column, the n
values are randomly distributed with one from each interval (0, 1/n), (1/n, 2/n), ..., (1−1/n, 1),
and they are randomly permuted.
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[1] Initialization: Let x0 ∈ Ω. Search space, feasible region Ω = <n. Define mesh

size and poll size parameters. ∆p
0 ≥ ∆m

0 > 0. Set iteration counter k ←− 0.

[2] SEARCH and POLL step: Perform SEARCH and POLL (including dynamic

ordering) steps until an improved mesh point is found on the mesh.

[2.1] Optional SEARCH: Evaluate function fθ on a finite subset of trial points

on the mesh. Any SEARCH strategy is valid - including none.

[2.2] Local POLL: Evaluate cost function fθ on computed frame using ∆m
k , ∆p

k

and the positive spanning n+ 1 or 2n set.

[3] Parameter Update: Update mesh size ∆m
k+1 and poll size ∆p

k+1, Set k ←− k + 1

and return to SEARCH and POLL steps.

Figure 6.2.: Algorithm:6: A general MADS algorithm (Audet and J. E. Dennis 2006)
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6.3. Test Case: Scale Model Structure

A scale model structure is considered as the test case for fully coupled, vibro-acoustic

optimization. One boundary surface of an acoustic cavity consists of a flat rectangu-

lar plate with fully clamped boundaries, while all other cavity boundary surfaces are

perfectly rigid. The acoustic cavity is comprised in the volume of an enclosing rect-

angular prism. A cross section of the volume geometry is shown in Figure:[6.3]. The

cross section has the following co-ordinate (x, y, z) values: A=(0,0,0), B=(1.5,0,0),

C=(1.5,0.75,0), D=(1.25,1,0), E=(0.5,1,0), F=(0,0.5,0). The extrusion for the cross

section to form the rectangular prism is 0.5m. The air in the cavity has an ambi-

ent fluid density ρf =1.225 kg/m3 and a speed of sound c=340 m/s. The coupled

vibro-acoustic system is excited by a time-harmonic mechanical point force F, ap-

plied at location (xf , yf , zf )=(0.66,1.0,0.35) on the plate, in the direction normal to

the plate. The edges of the plate along the boundary of the rectangle are clamped.

The output fluid node for the analysis is located at (xo, yo, z0)=(0.65,0.74,0.25). A

description of a similar test case can also be found in Desmet (1998).

A B

C

DE

F

Figure 6.3.: 2-D cross section of the rectangular prism considered for the coupled
structural acoustic optimization.

The first candidate material for the fully clamped plate is a glass fiber reinforce-

ment in the form of uni-directional fabric (Owens-Corning - Standard E-Glass Fiber-

glass) and epoxy resin (Ciba Geigy XR-1553) with catalyst addition (HY - 956) as
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matrix for the composite material. The second material is a Polypropylene glass com-

posite, developed within the scope of this project (EPSRC - Faraday Advance 2003),

is made up of continuous unidirectional glass reinforced polypropylene prepregs, pro-

duced by melt impregnation, in lay-ups for thermoplastic composite structures. The

following figures are manufacturers provisional figures for Polypropylene / Glass

with a 60% glass content by weight (35% by volume)3.

A total of 310 structural elements - SHELL181, and 7310 acoustic fluid elements

(including 330 interface elements) were used for the coupled model. SHELL181 is a

4-node shell element with six degrees of freedom at each node: translations in the

global x, y, and z directions, and rotations about the x, y, and z-axes. The accu-

racy in modeling composite shells via SHELL181 is governed by the first order shear

deformation theory (usually referred to as Mindlin-Reissner shell theory or FSDT)

(ANSYS 2005; Bathe 1995). It is worth noting that for the composite elements, an

alternate cartesian co-ordinate system is chosen and invoked, in order to align the

strongest fiber along the length of the plate. The acoustic model is modeled using

eight noded acoustic brick elements (ANSYS FLUID30), with one pressure degree

of freedom at each node. The coupled model is shown in Figure:[6.4]. The struc-

tural and acoustic model were coupled using the ANSYS Fluid Structure Interaction

(FSI) flag, which in turn creates the wetted surface with nodes on a fluid-structure

interface having both displacement and pressure degrees of freedom (ANSYS 2005).

Faces other than the roof and the firewall were assumed to be fully reflective i.e.

rigid walls. The resulting dimension of the coupled vibro-acoustic system via the

Cragg’s u/p formulation is 10,266.

3Measurements based on 8 ply (4 mm) test specimens.
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Figure 6.4.: Coupled Structural-Acoustic model for vibro-acoustic optimization.

6.3.1. Computational Results and Discussion: Four design

variables.

In this section results are presented for the E-Glass Fiber composite (Table:6.1)

with a wall thickness of 4mm, with 4 layers of equal thickness. In the four param-

eter results presented here, the allowable range of θ is 0 < θ < 180. Therefore,

the value of θ determines the stacking sequence and thus the material properties

and corresponding stiffness of the constrained structural plate. Here, values beyond

90 degrees indicates a stacking arrangement in the negative direction. The results

for the LHS/MADS optimization are summarized in Table:[6.2]. Results are pre-

sented and compared for the LHS/MADS sequence with varying sample sizes for

the LHS generation. A pref value of 60dB is used for this current study. An initial

stacking sequence of [0/0/0/0]sym is specified for the optimization. The steps in the

LHS/MADS method are briefly reviewed below:

[a ]Initial LHS sample size is chosen (50, 100 and 150 for this case).

[b ]Evaluate the function values for all LHS designs via moment matching, One

Sided Arnoldi.

[c ]Pass best design variable (with the least objective function value) to MADS

248



6. Structural Acoustic Optimization via Krylov Subspace Techniques

Table 6.1.: Material properties and thickness of candidate composite materials (E-
Glass Fiber and PP Glass Fiber) for structural acoustic optimization.

Material E-Glass Fiber PP Glass Fiber

Property Composite Composite

ρ [Kg/m3] 1780 1480

E11 [Gpa] 44.8 28

E22 [Gpa] 11.27 4

E33 [Gpa] 11.27 4

G12 [Gpa] 4.86 1.39

G13 [Gpa] 4.86 1.39

G23 [Gpa] 4.45 1.40

ν12, ν13, ν23 0.28, 0.28, 0.20 0.40, 0.39, 0.62

ζ 4% 4%

Thickness [mm] 4 and 2.1 3.8

via function call.

[d ]SEARCH and POLL MADS steps till hard (in MADS, this is mesh conver-

gence) or soft convergence is achieved.

[e ]Add data points to cache of known points (to avoid repeated evaluation) and

go back to [a]

Iterations continue in this manner until the objective function value converges to

give the final stacking sequence.

The results presented in Table:[6.2] indicate that a general decrease in objective

function values is apparent for all three LHS sample sizes (followed by MADS) in-

vestigated in this test case. A larger sample size seems to give results with a larger
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number of total function evaluations and least objective function value. This could

be attributed to the fact that, when an LHS sample size of 150 is used, the design

points are more thoroughly distributed in the design space, leading to POLL steps

closer to the global minimum. Figures:[6.5, 6.6, 6.7] show the variations in func-

tion value and mesh size per iteration. The decrease (or the break) in the mesh

size can be seen as the local minimas of the RMS weighted objective function value

obtained from the structral-acoustic noise transfer function. In terms of the com-

posite stacking sequences, it can be seen that the composite material is no longer

symmetrical in terms of lamination angles after optimization. From an initial lay

up of [0/0/0/0]sym the lamination angles move towards a lay up of [67/44/120/56].

Note that the face sheets of both the inner layers tend to be moving towards a more

cross ply orientation of [44/120], whereas the outer layer of the composite material

tend to be moving towards a more even orientation [67/56].

Figure:[6.8] compares the sound pressure level before and after optimization. It

can be seen that the optimized design variables result in a significant reduction

in SPL values across the entire frequency range. Sound pressure levels near fluid

resonant frequencies ≈122Hz, ≈178Hz have decreased by around 35dB and 45dB

respectively. In addition to this, the structurally damped resonant peak causing

fluid excitation at 60Hz has now been shifted to a lower pressure amplitude peak

at around 90Hz during the optimization process. This result can be attributed to

shifting of modes during the optimization process. Such a shift in noise-emitting

modes is due to the change in stiffness of the structure (and therefore the natural

frequencies), as an effect of a change in lamination angles of the composite structure

(Niyogi et al. 2000).

Note that the analysis was performed over a frequency band of 0-200Hz at 1Hz

increments and a pref value of 60dB was specified for the analysis. Typically, for au-
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tomotive NVH studies, this frequency range corresponds to the low-frequency range.

If a mid/higher frequency model is to be considered, more number of elements should

be utilized in the coupled model generation to take into account the spatial vari-

ation at higher frequencies (Desmet 1998). For this test case, the computational

times required for the optimization via ROM is 460 minutes. This corresponds to

2.2 minutes per design. From a computational viewpoint, this result indicates that a

significant reduction is computational time could possibly be achieved by modeling

the coupled vibro-acoustic system as as input-output problem, without sacrificing

solution accuracy. A cross check validation of the optimized design variables with

the direct inversion method can be found in Appendix:(D).

Table 6.2.: Optimization results for E-Glass Fiber composite with thickness of 4mm
with 4 layers. † Number of function evaluations

LHS Search† MADS† Stacking Sequence Objective Function

50 100 [74/0/35/40] 3.67 (19.79 for [0/0]sym)

100 76 [42/31/176/76] 3.63 (19.79 for [0/0]sym)

150 50 [67/44/120/56] 2.67 (19.79 for [0/0]sym)
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 Figure 6.5.: Change in RMS objective function value (left) and mesh size (right) dur-
ing optimization with initial 50 samples from LHS and starting stacking
sequence [0/0]sym
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 Figure 6.6.: Change in RMS objective function value (left) and mesh size (right)
during optimization with initial 100 samples from LHS and starting
stacking sequence [0/0]sym
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Figure 6.7.: Change in RMS objective function value (left) and mesh size (right)

during optimization with initial 150 samples from LHS and starting
stacking sequence [0/0]sym
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Figure 6.8.: A comparison of Arnoldi predicted fluid pressure for composite stack-
ing sequences: [0/0]sym, [0/90]sym, [30/-30]sym and optimum stacking
sequence [67/44/120/56] obtained by LHS/MADS optimization.

6.3.2. Computational Results and Discussion: Eight design

variables.

In this section results are presented for the E-Glass Fiber and PP Glass Fiber com-

posite (Table:6.1) with a wall thickness of 2.1mm, (8 layers) for the E-Glass Fiber

composite and 3.8mm (8 layers) for the PP Glass composite. Similar to the four

parameter results presented earlier, the allowable range of θ is 0 ≤ θ ≤ 180. A

reference pressure value of 60dB was enforced for the vibro-acoustic optimization.

The results for LHS/MADS sequential optimization with 150 LHS samples for

the E-Glass Fiber composite are tabulated in Table:[6.3]. The objective function

value has decreased from 28.9 for a [0/0/0/0]sym lay up to 4.96 for an unsymmetric

lay up of [153/68/70/64/32/31/37/45]. Once again, the LHS/MADS optimizer has

converged to a design with face sheets of the outer layer of the composite material
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(E-Glass Fiber) with a cross-ply orientation (153/45). Meanwhile, the (3/3) inner

lamination angles seem to be shifted by around 30 degrees with respect to each

other. Figure:[6.10] compares the sound pressure level before and after optimiza-

tion. A general decrease in SPL levels for the considered fluid output is apparent

over the entire frequency range. An illustration of the optimized lamination angles

for the considered composite material is shown in Figure:[6.11]. In this case, sound

pressure levels near fluid resonant frequencies ≈122Hz, ≈178Hz have decreased by

around 40dB and 20dB (when compared to a [30/-30/30/-30]sym configuration) re-

spectively. Note that the coupled resonance peak at 178Hz is slightly shifted in

comparison with other configurations. In addition to this, four structurally damped

resonant peaks (≈30Hz, ≈50Hz, ≈75Hz ≈145Hz for [30/-30/30/-30]sym configura-

tion) causing the nodal fluid excitation no longer seem to appear in the transfer

function of the optimized lay up. Similar to results encountered in four parameter

test case, this result can be attributed to shifting of modes (due to the change in

the structural stiffness) during the optimization process. This phenomenon is well

documented (Fernholz and Robinson 1998; Niyogi et al. 2000).

All optimizations were performed on a stand alone Pentium 4, 3.2GHz, 2Gb RAM

machine [Me2]. Figure:[6.9] shows the variations in function value and mesh size

as the optimization progressed. In terms of computational efficiency, the search

performed with initial 150 LHS samples takes longer to attain mesh convergence.

Figure:[6.9] indicates that there are numerous local minimas encountered by the op-

timizer. This could possibly explain the reason for the very high number of function

evaluations (648 objective function evaluations) needed for this test case.

The results for LHS/MADS sequential optimization with initial 50, 100 and 150

LHS samples for the PP Glass Fiber composite are tabulated in Table:[6.4]. The

objective function value has dropped from 27.71 for a [0/0/0/0]sym lay up to 12.61
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Table 6.3.: Optimization results for E-Glass Fiber composite with thickness of
2.1mm with 8 layers.† Number of function evaluations

LHS Search† MADS† Stacking Sequence Objective Function

150 498 [153/68/70/64/ 4.96

32/31/37/45] (28.9 for [0/0/0/0]sym)
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 Figure 6.9.: Change in RMS objective function value (left) and mesh size (right) dur-
ing optimization with initial 150 samples from LHS and with a starting
stacking sequence [0/0/0/0]sym for E-Glass fiber composite.
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Figure 6.10.: A comparison of Arnoldi predicted fluid pressure for composite stack-
ing sequences: [0/0/0/0]sym, [0/90/0/90]sym, [30/-30/30/-30]sym and
optimum stacking sequence [153/68/70/64/32/31/37/45] obtained by
LHS/MADS optimization.

Figure 6.11.: Layer plot of optimum stacking sequence for E-Glass Fiber composite
with wall thickness of 2.1mm with 8 layers.

256



6. Structural Acoustic Optimization via Krylov Subspace Techniques

for an unsymmetric lay up of [166/6/59/18/53/31/17/59]. Once again, it can be

observed that the face sheets of the outer most layers of the composite material

(PP Glass Fiber) tend to be moving towards a cross-ply orientation (166/59). A

comparison of SPL values before and after optimization is shown in Figure:[6.15].

Generally speaking, a significant decrease in the amplitudes of pressure values can

be observed over the entire frequency range. Note that the peak at around 85Hz

observed in the other lay up configurations, has now been split into two peaks at

≈70Hz and ≈90Hz with much lower pressure amplitudes. On the other hand, in

the frequency range of 120-150Hz, the optimum stacking sequence results in higher

peak pressures when compared to say the [0/0/0/0]sym configuration. This result

can be primarily attributed to the fact that: (a) the value of pref used in this study

was 60dB and (b) the optimization was considered over the entire frequency band

of 0-200Hz in 1Hz increments. The successful design simply meets both the above

criterions and as a result does not focus on a particular frequency band. A cross

check validation of the optimized design variables with the direct inversion method

can be found in Appendix:(D).

Figures:[6.12,6.13, 6.14] show the variation in mesh size and objective function

value during the optimization process with the considered LHS sample sizes. For

the PP Glass composite material properties with the least RMS SPL value, a total

of 427 function evaluations were required to achieve mesh convergence. Note that

the test case is essentially a single-component model with an enforced pref value of

60dB. Obviously, if a similar composite material is used on a partial surface of a

real-life structure such as an automotive BIW, and an optimization performed, the

results would be very different (in terms of lamination angles). This is primarily

because in this test case, the structural modes are controlled by the composite plate

alone, whilst, in a real life structure, the global (and other local) modes would also

play a major role in the noise transfer function. Additionally, it is worth mentioning
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that the optimization considered only one fluid output to compute the objective

function. Therefore, it is very much possible that the optimized lay up results in

higher SPL values around other fluid grid locations. Apparently, at this moment,

there is no literature addressing this particular issue in vibro-acoustic optimization

(Marburg 2002a). However, since this work aims to demonstrate the feasibility of

reducing SPL levels by tailoring the lamination angles (via Arnoldi ROM projec-

tions), a comparison with other possible objective function formulations becomes

out of the scope of this current study.

Table 6.4.: Optimization results for PP Glass Fiber composite with thickness of
3.8mm with 8 layers. †Number of function evaluations.

LHS Search† MADS† Stacking Sequence Objective Function

50 200 [159/69/83/150 14.62

95/106/161/175] (27.71 for [0/0/0/0]sym)

100 334 [62/153/88/120/ 13.94

101/159/0/178] (27.71 for [0/0/0/0]sym)

150 277 [166/6/59/18/ 12.61

52/31/17/59] (27.71 for [0/0/0/0]sym)
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 Figure 6.12.: Change in RMS objective function value (left) and mesh size (right)
during optimization with initial 50 samples from LHS and with a start-
ing stacking sequence [0/0/0/0]sym for PP-Glass fiber composite.
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 Figure 6.13.: Change in RMS objective function value (left) and mesh size (right)
during optimization with initial 100 samples from LHS and with a
starting stacking sequence [0/0/0/0]sym for PP-Glass fiber composite.
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 Figure 6.14.: Change in RMS objective function value (left) and mesh size (right)
during optimization with initial 150 samples from LHS and with a
starting stacking sequence [0/0/0/0]sym for PP-Glass fiber composite.
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Figure 6.15.: A comparison of Arnoldi predicted fluid pressure for composite (PP-
Glass) stacking sequences: [0/0/0/0]sym, [0/90/0/90]sym, [30/-30/30/-
30]sym and optimum stacking sequence [166/6/59/18/52/31/17/59] ob-
tained by LHS/MADS optimization.
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7. Conclusions and

Recommendations

In this thesis, it was shown that the vibro-acoustic coupled model can be formulated

as an input output problem, where the main goal is to accurately represent the

the two-way coupled interaction between the fluid and the structural domains under

investigation. Although finite element methods (via direct inversion or modal super-

position) can provide models with the desired level of accuracy, they are generally of

very high order and are therefore not suitable for design sensitivity or vibro-acoustic

optimization studies. Moreover, if a dense fluid is utilized for the cavity (e.g. water),

it is well known that uncoupled modal superposition suffers from lack of reliable cri-

terions for kept-modes for projection to a lower dimension eigen vectors space in the

case of strongly coupled problems. In the case of weakly coupled problems, there

exists a problem of computing a large number of acoustic modes for inclusion into

the acoustic modal base due to the violation of the continuity condition along the

fluid-structure interface. Therefore, an engineer needs to take into account the fluid

medium (and thus any associated correction factors), before proceeding to predict

pressures in the fluid domain. In addition to this, for real life structures such as an

automotive or an aircraft interior, manufacturing tolerances and material property

uncertainty, often requires repeated simulations. In this way, the material proper-

ties and manufacturing tolerances (e.g. shell thickness) are back calculated for a

given model. The work demonstrated that lower order vibro-acoustic models can
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be directly obtained by systematic dimension reduction of a higher order coupled

models. The resulting models seem to exactly replicate the input output behavior

of the higher dimensional model over a wide range of frequencies. The reduction

can be performed based on the specific problem at hand such that the important

dynamics of the coupled system are accurately captured.

Reduced order, fully coupled structural acoustic models have been developed

for linear, 2-D and 3-D interior acoustic problems utilizing Cragg’s displace-

ment/pressure (u/p) formulation. In Chapter:[5], the proposed reduction methods

were applied to fully coupled structural-acoustic systems of low, medium and high

orders and the computational results discussed. The results clearly show that very

good approximation properties can be obtained by matching the low frequency mo-

ments of the weakly (or) strongly coupled vibro-acoustic systems. For the undamped

and constantly damped test cases, it was shown that One sided Arnoldi (OSA) and

Two-Sided Arnoldi (TSA) were very effective for dimension reduction of the higher

dimensional system. Further, it was demonstrated that by matching more number

of moments (2q in two-sided methods as opposed to q in one sided methods), a ROM

could be generated with a higher degree of accuracy. For the linearly damped test

cases, the Two-Sided Second Order Arnoldi (TS-SOAR), which generates candidate

vectors (for projection) belonging to the induced second order Krylov subspaces, was

shown to generate a ROM with excellent accuracy and computational efficiency. This

method directly utilizes the coupled damping matrix Csa in the dimension reduction

process. Note that the SOAR procedure can also be used to solve the quadratic

eigenvalue problem (Bai and Su 2005b). When compared to the linearization state

space approach, the TS-SOAR process preserves the underlying second order struc-

ture of the coupled problem. Dimension reduction has been demonstrated for both

structural and acoustic excitation via the well known reciprocity computation of the

displacement and pressure dynamic transfer functions. The number of states (in the
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generalized co-ordinates) required by dimension reduction via Arnoldi based Krylov

subspace techniques was shown to be typically of a much lower order compared to

the original higher dimensional model. For the test cases investigated in this work,

the number of states required by direct projection to accurately capture the coupled

dynamics is summarized in Table:[7.1].

Structural damping is considered in this work in two different forms: constant

damping and linearly dependent (frequency) damping models. These damping mod-

els are typically of the kind currently used in industrial NVH studies. It was shown

that constant damping can be incorporated into the dimension reduction process, by

applying the standard one-sided and two-sided Arnoldi algorithm(s) to the higher

dimensional, complex, structural-acoustic system. For a coupled system with lin-

early dependent structural damping or constant acoustic damping (in the form of

boundary admittance coefficient), the Two-Sided, Second order Arnoldi process (TS-

SOAR) and dimension reduction by equivalent state space transformation techniques

have been demonstrated. The TS-SOAR process, essentially eliminates the need for

a LU factorization of the coupled system of double the dimension generated by

transformation to first-order. Additionally, the underlying second order structure

of the original problem is preserved. In terms of accuracy, dimension reduction of

damped models was shown to be more accurate than undamped systems - compared

to the direct inversion technique. Generally speaking, an important observation can

be made from this work: It is very much possible to generate structure preserving,

moment matching, ROMs for an interior, fully coupled, undamped and damped,

structural-acoustic analysis.

A comparison of commonly employed solution strategies for fully coupled fluid-

structure analysis is presented in Table:7.21. In essence, it can be seen that the

1The table makes a comparison between moment matching Arnoldi and ABAQUS implemented
Coupled Lanczos (CL) and the AMLS version of the CMS procedure.
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Table 7.1.: A comparison between the number of higher dimensional and lower di-
mensional states for dimension reduction via Arnoldi based Krylov sub-
space techniques. TC7§ Optimization test case.

Test Case Higher Dimensional Lower Dimensional Reduction

States (DOFs) States (DOFs) Factor

TC1 23,412 100 × 234

TC2 11,827 30 × 394

TC2.1 11,827 30 × 394

TC3 3,278 50 × 66

TC4 9223 100 × 92

TC5 10,264 150 × 68

TC6 62,353 90 × 693

TC7§ 10,266 25 × 411
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moment matching techniques do not pass through the eigen-solution and therefore

do not rely on the number of kept modes for projection. Alternatively, an LU fac-

torization is a strict requirement for Arnoldi based moment matching techniques.

Throughout this work, it was assumed that an LU factor of the higher dimensional

system matrices at any desired expansion point is available. Indeed, in the numeri-

cal examples presented in Chapter:[5], it was demonstrated that this LU factor was

available for a wide range of expansion points.

Obviously, one could envisage a number of extensions that could be applied to

the reduced order models obtained by matching some of the low frequency moments

outlined in this research. The reader is also referred to Markov parameter matching,

where, essentially, the first few Markov parameters (or the so called high-frequency

moments) are matched and a structure-preserving reduced order model constructed

(Chahlaoui et al. 2005; Salimbahrami 2005). Provided that an underlying FE/FE

code is available for coupled matrix extraction, a direct application of the moment

matching framework (and its variants) is possible to the velocity potential formula-

tion, the displacement formulation for the fluid or any other mathematically valid

fluid/structure coupled formulation. These higher dimensional formulations could

also account for porous material behavior. Note that moment matching for damped

systems involving an explicit participation of [Csa] was also demonstrated via the

state-space, first order based transformation technique. There exists coupled vibro-

acoustic applications, where state space modeling is also employed for active noise

control (Lane and Griffin 2001; Oliveira et al. 2006; Auweraer et al. 2006) and the

straightforward Arnoldi based projection formulations discussed in this thesis could

possibly be applied to these coupled systems. Further, it could be possible to start

with a basis of eigen modes, and then to use the Krylov-subspace based moment

matching methods to enhance this basis in order to improve the accuracy in the pre-

defined spectrum (Lehner and Eberhard 2006; Lehner and Eberhard 2007). Other
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possible Krylov subspace based reduction approaches include SVD-Krylov (Antoulas

2003) and the newly developed Fourier based model reduction processes (Willcox

and Megretski 2005; Gugercin and Willcox 2008).

In terms of algorithm development, it is worth noting that an implicitly restarted

Arnoldi process (Lehoucq 1995; Sorensen 1995; Antoulas 2003) could be invoked,

which essentially, saves memory and increases the efficiency of the Arnoldi process.

Generally speaking, after a few initial iterates, the Arnoldi process is interrupted,

and the current approximation the associated residual is computed. These then be-

come the starting matrices and vectors for the new recursion that is executed for at

most m iterations. Thus the main advantage of a restarted Arnoldi scheme is that at

most k iterations of the Arnoldi method are carried out, so that both computational

costs and memory allocations per cycle are under user control (Simoncini and Szyld

2007). Note that the SOAR scheme was only recently developed, and a restart of

SOAR is still an open research question (Meerbergen 2007a).

The Q-Arnoldi version of the Arnoldi algorithm could possibly also be utilized to

reduce second order damped systems. Q-Arnoldi is, in fact, developed for the eigen-

value problem. It does preserve the structure to some extent. In comparison with

the SOAR method, the Q-Arnoldi scheme can compute a Schur factorization for the

quadratic eigenvalue problem (QEP) which SOAR cannot achieve. For a description

of Q,W schemes of the Arnoldi process, the reader is referred to Meerbergen (2007b),

Bai et al. (2005). However, in comparison with the SOAR process, in the Q-Arnoldi

process, the complete second order structure of the underlying problem might not

be preserved. It is easy to see that the two-sided Arnoldi processes can be efficiently

parallelized (Grimme 1997), allowing for simultaneous evaluation of Arnoldi vectors

for the given subspaces. In this way, further reduction in computational times can

be achieved. Since the Arnoldi iteration is closely connected with solving linear sys-
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tems2 (Simoncini and Szyld 2007), computing a few eigenvalues (Sorensen 1995; Bai

and Su 2005b) and moment matching based dimension reduction (Bai et al. 2005),

today, active research is ongoing within the mathematical and computational sci-

ences community to improve the computational efficiency properties of the Arnoldi

method e.g. see Yang (1998). Although not verified in this thesis, it could easily

turn out that any modified version of the Arnoldi iteration could be utilized to gen-

erate a reduced order model for the fully coupled structural-acoustic case.

Throughout this thesis, a non-zero, real expansion point was chosen for matrix

factorization. Another interesting approach, which expands the system matrices

at complex expansion points (Antoulas and Sorensen 2001; Grimme 1997) could

provide useful insights for establishing an automatic search criteria for factoriza-

tion. In this work, the primary aim was to accurately represent the input-output

behavior (in the form of system transfer function) of the coupled system. Since the

Arnoldi vectors generated effectively span the same subspace as the eigen vectors

(Willcox 2000), it could further be possible to obtain the eigen values directly from

the reduced system. However, for a coupled structural-acoustic case, to the authors

knowledge, no existing work compares the eigen values and eigen vectors obtained

from the higher dimensional interior, structural-acoustic model and the lower dimen-

sional model obtained directly by moment matching. For an initial state space LTI

transformed model for the prediction of natural frequencies and mode shapes of fluid

loaded plates, the reader is referred to Li and Li (2006a), Li and Li (2006b). Here,

the modal parameters by recasting the original system (including the frequency de-

pendent acoustic damping matrix) into a generalized eigenvalue problem (GEP). It

is worth reminding the reader that recasting a second order system to a state-space

form, doubles the dimension of the resulting system. Additionally, the physical sig-

2In fact, the use of the Krylov subspaces in iterative methods for linear systems (for structural-
acoustic applications see: Malhotra et al. (1997), Freund and Malhotra (1997)) is counted
among the “Top 10” algorithmic ideas of the 20th century.
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nificance of the higher dimensional coupled system matrices are lost. Note that the

reduced order model generated via moment matching, can also be utilized for a time-

domain simulation of the coupled system. Although in this work, no explicit test

cases were generated for a time domain simulation, various engineering examples

exist (Willcox 2000; Lassaux 2002; Salimbahrami 2005), where successful simulation

of the ROM in the time domain were performed.

A constrained composite plate - rectangular prism cavity system was modeled and

the lamination angles of the composite structure, assuming one flexible wall, were

optimized to demonstrate the feasibility of reducing interior noise levels through

optimal lamination angles. A point force simulating the structure borne noise was

applied to the model. Optimization of the lamination angles was performed over

a frequency range of 0 −→ 200Hz at 1Hz increments. One observation location

(approximately at the drivers ear location) in the fluid domain was used to de-

fine a RMS weighted objective function value for the optimization problem. The

proposed optimization framework incorporated dimension reduction via Krylov sub-

space techniques to save computational time whilst preserving the accuracy of the

state variables (pressures) inside the fluid domain. The optimized design variables

were cross validated for accuracy in comparison with the direct inversion technique.

It was demonstrated that it is very efficient and straightforward to incorporate such

structure preserving, moment matching techniques in a NVH design cycle to save

computational time, without sacrificing the accuracy of the computed objective func-

tion under investigation.

Typically, for automotive NVH applications, gradient based methods are often

utilized to compute sensitivities of the design variables. Although it is well known

that the transfer function is multi-modal, the use of evolutionary algorithms such

as Genetic algorithm (GA) are considered to be time consuming (Marburg 2002a).
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Therefore, in this work, a tailored version of MADS has been utilized for the opti-

mization of the coupled structural-acoustic problem. This approach was chosen to

give flexibility in controlling the number of function evaluations required and remove

the requirement of choosing a good starting design vector. The optimization method

incorporated a LHS search and a new polling method (in the form of MADS) for the

coupled structural-acoustic optimization problem. It was also demonstrated that

the initial LHS search is vital to successful optimization. The four parameter and

eight parameter results show that the optimizer always seem to converge to a non-

symmetric lay-up for the composite plate. In terms of the optimized noise transfer

function, both mode-shifting and peak-splitting phenomenons were observed.

In terms of coupled vibro-acoustic optimization, it is worth mentioning that in-

corporating constraints can be done with ease in an LHS/MADS environment e.g.

the filter approach (Marsden 2004), use of Lagrange multipliers (Matlab 2006). A

straight forward extension can also be made be simply applying the yes/no criterion

for constraints (Marsden 2004). In terms of future optimization work, the use of

surrogates for vibro-acoustic optimization is worth investigation. Surrogates (such

as Kirring) fit well among with pattern search methods. This is because of the in-

herent flexibility of MADS, because they can be separated into a SEARCH step,

which offers the user flexibility to incorporate any search strategy, and a POLL step

which provides the basis for proof of convergence. Another possible approach could

be a Genetic algorithm (GA) /MADS sequence, where the results from a GA search

are passed to MADS. For an application of such a 2-stage hybrid algorithm (using

a stochastic genetic algorithm for stage 1 followed by a deterministic pattern search

algorithm for stage 2) for locating heavy atoms in biological applications, the reader

is referred to Payne and Eppstein (2005).

The optimization work described in this thesis did not explicitly consider any ef-
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fects of stacking sequence (symmetry, balancing) on the structural integrity of the

structure. Obviously, these effects cannot be ignored by any manufacturer and in

general, automotive and aerospace designers place structural integrity higher up in

priority than acoustic comfort. For example, all automotive manufacturers acknowl-

edge the effect of the choice of joining technologies on NVH characteristics, but it

is not seen as a primary influence on design strategies (DTI 2004). However, note

that the constrained optimization framework described in Section:[6], allows for such

an evaluation of structural integrity. Precisely speaking, in Equations:[6.4→ 6.6],

additional structural constraints (like stresses or maximum deflection of shells) can

be enforced, requiring a single component or global model static analysis. In such a

case, it is worth noting that the computational time would increase.
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A. Machine Specifications

Table:[A.1] lists the MATLAB bench timings1 on V7.1.

Table A.1.: Bench timings for machines used for validating structural-acoustic anal-

ysis via Krylov subspace based projection techniques.

Machine LU FFT ODE Sparse 2-D 3-D

[Me1] 0.5061 0.9194 0.4626 1.1400 1.0569 1.4666

[Me2] 0.2417 0.3262 0.3177 0.5275 0.6747 0.4828

[Me3] 0.3438 0.3688 0.2859 0.4906 0.4106 0.5890

[Me4] 0.1947 0.2888 0.1842 0.4570 0.3939 0.7202

1In general, the lower the values are, the better.
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B. Uncoupled Modal Coupling

Theory

Fahy (1985) describes equations for the coupled structural-acoustic response of a

system in terms of the summation of structural and acoustic mode shapes. The

structural displacement is described in terms of a summation over the in vacuo

normal modes as follows:

w(rs) =
∞∑

p=1

wp φp(rs) (B.1)

where φp is the mode shape of the pth structural mode, rs is an arbitrary location

on the surface of the structure, and wp is the modal participation factor of the pth

mode. Note that the time dependent term ejωt has been removed from this equation

and others in this section to simplify the analysis.

The acoustic pressure is described in terms of a summation of the acoustic modes

of the fluid volume with rigid boundaries as:

p(r) =
∞∑

n=0

pn ψn(r) (B.2)

where ψn is the acoustic mode shape of the nth mode, r is an arbitrary location

within the volume of fluid, and pn is the modal participation factor of the nth mode.

Note that the n = 0 mode is the acoustic bulk compression mode of the cavity that

must be included in the summation.
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B. Uncoupled Modal Coupling Theory

The equation for the coupled response of the structure is given by (Fahy 1985):

ẅp + ω2
p wp =

S

Λp

∑
n

pnCnp +
Fp

Λp

(B.3)

where ωp are the structural resonance frequencies, Λp are the modal masses, Fp are

the modal forces applied to the structure, S is the surface area of the structure, and

Cnp is the dimensionless coupling coefficient given by the integral of the product of

the structural (φp) and acoustic (ψn) mode shape functions over the surface of the

structure, given by:

Cnp =
1

S

∫
S

ψn(rs)φp(rs) dS (B.4)

The equation for the coupled response of the fluid is given by: (Fahy 1985)

p̈n + ω2
n pn = −

ρ0c
2S

Λn

∑
p

ẅpCnp +

ρ0c
2

Λn

 Q̇n (B.5)

where, ωn are the resonance frequencies of the cavity, ρ0 is the density of the fluid,

c is the speed of sound in the fluid, Λn is the modal volume, and Qn is the source

strength with units of volume velocity (hence Q̇n has units of volume accelera-

tion). The in vacuo structural and hard walled acoustic modes are calculated using

the commercial finite element package ANSYS, and Ns structural and Na acoustics

modes are retained.

The equations for the fully coupled vibro-acoustic system, can be formed into a

matrix equation using Equations: [B.3,B.4,B.5] as follows:

 A −SC

−S ω2 CT B


wp

pn

 =

Fp

Q̇n

 (B.6)
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B. Uncoupled Modal Coupling Theory

where A is a (Ns×Ns) diagonal matrix with elements App = Λp(ω
2
p−ω2) and B is a

(Na×Na) diagonal matrix with elements Bnn = Λn/ρ0c
2 (ω2

n−ω2). The off diagonal

elements account for the cross coupling between structure and fluid, where C is a

(Ns ×Na) matrix with individual entries given by the elements of Cnp. This matrix

can be solved by matrix inversion techniques to find the coupled modal participation

factors, and hence the coupled response of both the structure and cavity. Damping

can easily be added on a modal basis (Fahy 1985; Cazzolato 1999).

The modal coupling technique, although well suited for weakly coupled systems,

is not sufficiently accurate when the structural and acoustic subsystems are strongly

coupled. An illustration of the reduced accuracy and efficiency of the uncoupled

modal approach for strongly coupled problems can also be found in Tournour and

Atalla (2000), Boily and Charron (1999). As a check, to demonstrate this fact for

this work, consider the undamped, simply supported plate-cavity system in Test

Case No.3 (Section:5.4). A comparison between the direct inversion method and

uncoupled modal coupling for the structural and fluid response locations are shown

in Figures:[B.1,B.2]. For the uncoupled modal coupling, the acoustic modal analysis

for kept modes was driven till 20,000Hz (well above the common 2 × fmax criterion).

It can be observed that in spite of retaining a large number of acoustic modes, the

modal coupling method does not attain convergence.
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B. Uncoupled Modal Coupling Theory
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Figure B.1.: Test Case No. 3: Predicted driving point structural displacement trans-
fer function (receptance) using direct and uncoupled modal coupling
projection.
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Figure B.2.: Test Case No. 3: Predicted Fluid Noise Transfer Function using direct
and uncoupled modal coupling projection for fluid node at the center
of the acoustic domain.
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C. Test Case No. 6

The sparsity plot for the coupled mass, stiffness and damping matrices are shown in

Figures:[C.1,C.2,C.3]. A comparison between the noise transfer functions obtained

by direct inversion and TSA projections for the coupled models: TC6BM ,TC6TT , are

shown in Figures:[C.4,C.5]. A comparison of direct inversion predicted noise transfer

function at fluid node (0.9m, 0.5m, 0.08m) for undamped and constant acoustically

damped model [TC6Tac] is shown in Figure:[C.6]. It can be clearly observed that

most of the structural peaks do not differ in terms of pressure amplitudes, whereas,

coupled peaks close to the acoustic resonance frequencies at ≈122Hz, ≈240Hz and

≈265Hz have decreased due to the addition of constant acoustic damping in the

form of boundary admittance coefficients.
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C. Test Case No. 6

Figure C.1.: Test Case No. 6: Sparsity plot for coupled Stiffness Matrix.

Figure C.2.: Test Case No. 6: Sparsity plot for coupled Mass Matrix.
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C. Test Case No. 6
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Figure C.3.: Test Case No. 6: Sparsity plot for coupled Damping matrix.
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Figure C.4.: Test Case No. 6: ANSYS and TSA projection predicted Noise Transfer
Function at fluid node (0.9m,0.5m,0.08m) for model TC6BM .
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Figure C.5.: Test Case No. 6: ANSYS and TSA projection predicted Noise Transfer
Function at fluid node (0.9m,0.5m,0.08m) for model TC6TT .
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Figure C.6.: Test Case No. 6: A comparison of direct inversion predicted noise
transfer at fluid node (0.9m,0.5m,0.08m) for undamped and constant
acoustically damped model [TC6Tac].
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D. Optimization Test case

Since the optimization utilizes One-sided Arnoldi (OSA) process for dimension re-

duction, the resulting optimized design variables are a consequence of function calls

to Arnoldi. Therefore, in order to cross validate the final design variable, an accu-

racy comparison is made with the direct inversion technique. The resulting noise

transfer functions for the 4 layer E-Glass fibre composite is shown in Figure:[D.1].

For the 8 layer E-Glass fibre and PP Glass fibre composites, the optimized noise

transfer function are compared in Figures:[D.2, D.3]. It can be observed that no

accuracy is lost by generating ROMs via moment matching based procedures.
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Figure D.1.: A comparison of noise transfer function obtained by ANSYS direct
and One-sided Arnoldi (OSA) projection for optimized 4 layer stacking
sequence.
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Figure D.2.: A comparison of noise transfer function obtained by ANSYS direct
and One-sided Arnoldi (OSA) projection for optimized 8 layer stacking
sequence (with material E-Glass Fiber composite).
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Figure D.3.: A comparison of noise transfer function obtained by ANSYS direct
and One-sided Arnoldi (OSA) projection for optimized 8 layer stacking
sequence (with material PP-Glass Fiber composite).
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E. Sample Computational Files

In this section, the procedure to run a systematic model reduction for the fully

coupled, structural-acoustic model, [TC3FFa] from Test Case No.3 (Table:5.12). It is

assumed that ANSYS, Mathematica and MATLAB is available to drive the following

computations. The user directory is the working directory and the home directories

are the default installation directories of MATLAB and Mathematica. The files

listed in this section are available in the attached DVD.

[S1]. Run higher dimensional model: As a start point, the higher dimen-

sional model is solved via the direct method in ANSYS for results comparison

with the proposed Arnoldi based projection formulations. Place contents of the

folder FolderTC3FF to the user directory. For convenience, it is recommended

to run the model file (Model.txt), and the subsequent post-processing files (harm-

res1tModel.txt,harmres2tModel.txt) in the ANSYS batch mode1. The list of gener-

ated files are listed in file StepS1.txt.

[S2]. Extract files and assemble second order system: Extract contents of

zip file (DM.zip) to the user working directory2. The following steps should be

executed to extract the higher dimensional Msa, Ksa and Csa and assemble the

1Throughout this thesis, all ANSYS computations were performed in batch mode (from MAT-
LAB) for timing comparison.

2The zip file contains a compiled version of the open source C++ code dumpmatrices (Rudnyi
and Korvink 2006) which is also used in this test case (in conjunction with the WRFULL
command in ANSYS) to extract and write the higher dimensional system matrices in Matrix
Market format. The DLL libraries from the ANSYS distribution were required to compile the
programs.
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E. Sample Computational Files

system outside ANSYS. First, run file ComplexHDmatrices.txt in ANSYS. Next,

Run file: extractfiles.bat externally3from MATLAB. Now, modify the first line of all

*.B files as follows: [3278 2 1] −→ [3278 1 1]. This is because in this test case, the

coupled system is excited using only one input vector. Run AssembleModelMb.bat

followed4 by copyfiles.bat from MATLAB . The list of generated files are listed in

file StepS2.txt.

[S3]. Perform Arnoldi vector computation and projections: In this step, dimen-

sion reduction is performed via the Krylov Subspace based TS-SOAR process. This

is then followed by projections and reduced harmonic simulation. To achieve this

computation, the file ArnoldiCompsMb.bat needs to be run via MATLAB5. Note

that in this test case, an expansion point of fexp =350Hz is used for the analysis6.

The list of generated files in this step are shown in lists file StepS3.txt.

[S4]. Plot results and local error: Run file MatTransfer.m followed by file Diff-

Files.m to compute local error and compare ANSYS direct and TS-SOAR projection

approaches. Comp.pdf, Diff.pdf are the output files with comparison and local er-

ror plots. The list of generated files in this step are shown in lists file StepS4.txt.

Additionally, for generation of first order systems, the file FirstOrderSpy.txt needs

to be run in MATLAB with the Read* and ReadFo* files in the user working direc-

tory. Second order sparsity pattern can be analyzed using Spy.txt file by running in

MATLAB.

3External files can be run in MATLAB via the (!) command. Place file AssembleModelMa.txt in
the Mathematica home directory and MATLAB file AssembleModelMb.bat in the user directory.

4Note that all files needs changing in terms of working directory and Mathematica/Matlab home
directories. An example of the syntax is given in each file.

5Place file ArnoldiCompsMa.txt in the Mathematica home directory and MATLAB file
ArnoldiCompsMb.bat in the user directory.

6Note that the following parameters need to be modified (in file
ArnoldiCompsMa.txt) accordingly for a change in expansion points: osexpansion-
forM,osexpansionforE,tsexpansionforM,tsexpansionforE in the module SecOrderTSSOAR
in the file SecOrder.m.

285



References

ABAQUS (2005). V6.5 Theory and Benchmark Manual.

http://www.simulia.com/; Accessed on: 01/02/2005.

Abramson, M. A. and C. Audet (2006). Convergence of Mesh Adaptive Di-

rect Search to second-order stationary points. SIAM Journal on Optimiza-

tion 17 (2), 606–619.

Ali, A., C. Rajakumar, and S. Yunus (1995). Advances in acoustic eigenvalue

analysis using boundary element method. Computers and Structures 56 (1),

837–847.

ANSYS (2005). V10 Theory Manual. http://www.ansys.com; Accessed on:

06/12/2005.

Antoulas, A. and D. Sorensen (2001). Approximation of large-scale dynamical sys-

tems: An overview. International Journal of Applied Mathematics and Com-

puter Science 11 (1), 1093–1121.

Antoulas, A. C. (2003). Approximation of large-scale dynamical systems (1st ed.).

ISBN: 0-89871-529-6: Society for Industrial and Applied Mathematics.

Arnoldi, W. (1951). The principle of minimized iterations in the solution of the

matrix eigenvalue problem. Quarterly Journal of Applied Mathematics 9, 17–

29.

286



REFERENCES

Aruleswaran, A. (2001). Dynamic Behaviour of Adhesive Bonded Sub-assemblies

for Automotive Vehicle Structures. Ph. D. thesis, Department of Mechanical

Engineering, Oxford Brookes University, UK.

Atalla, N. and R. J. Bernhard (1994). Review of numerical solutions for low fre-

quency structural-acoustic problems. Applied Acoustics 43 (5), 271–294.

Audet, C. and J. J. E. Dennis (2002). Analysis of Generalized Pattern Searches.

SIAM Journal on Optimization 13 (3), 889–903.

Audet, C. and J. J. E. Dennis (2004). A pattern search filter method for nonlinear

programming without derivatives. SIAM Journal on Optimization 14 (4), 980–

1010.

Audet, C. and J. J. E. Dennis (2006). Mesh Adaptive Direct Search algorithms

for constrained optimization. SIAM Journal on Optimization 17 (1), 188–217.

Auweraer, H. V., L. P. Oliveira, M. D. Silva, S. Herold, J. Mohring, and A. Der-

aemaeker (2006). A virtual prototyping approach to the design of smart struc-

tures applications. In Proceedings of the International Conference on Noise and

Vibration Engineering ISMA2006, Leuven, Belgium, Volume 1, pp. 273–284.

Bai, Z., P. Feldmann, and R. W. Freund (1997). Stable and passive reduced-order
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