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Abstract 
 
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are most 

important tools in the fields of chemistry and biology. MRI enables non-invasive, three-
dimensional imaging of soft tissues in biological specimens ranging from mice to human 
being. There is growing interest in performing high-resolution MRI studies at the scale of 
biological cells.  
 
By miniaturizing the MRI detection coil, one achieves increased sensitivity for analysis of 

micro-sized samples. A micro-MR image requires a highly homogenous magnetic field within 
the region where the sample is. An inhomogenous magnetic field leads to image artifacts 
due to the localized variations in spin precession frequency.  
 
In order to study field uniformity within a solenoidal microcoil, which is used for micro-MR 

cell imaging, we build a model and simulation using ANSYS® 8.1 and then simulate the 
magnetic filed within the coil turns. For this purpose, 2-dimensional axis-symmetric model 
has been created and the resulting magnetic filed properties which are returned from 
harmonic solution of low frequency electromagnetic analysis has been used as an objective 
function for a numerical optimization process. 
  
The aim of the optimization is to optimize the microcoil geometry in order to achieve a 

homogenous magnetic field which is necessary for high resolution imaging in MRI. The DOT 
optimization software coupled to ANSYS allows us to implement an iterative method and 
increase the field uniformity within the coil by variation of the design parameters up to 50%. 
 
 Furthermore, predictive design and optimization of a microcoil system requires the ability 

to compact behavioral model for accurate and fast simulation. In this project, the use of 
model order reduction of such a model for harmonic analysis is demonstrated by means of 
more4ansys tool. The mor4ansys has been developed at the simulation group, University of 
Freiburg. The result shows good simulation accuracy and a considerable speed up the 
computational time.  
 
 

 
Keywords: Nuclear Magnetic Resonance, Magnetic Resonance Imaging, field uniformity, 
solenoidal microcoil, micro-MR cell imaging, ANSYS, low frequency electromagnetic 
analysis, numerical optimization, DOT optimization software, mor4ansys, model order 
reduction, simulation 
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Zusammenfassung 
 
   
  Magnetische Kernresonanz (Nuclear magnetic Resonance: NMR) und Magnetresonanz-
tomographie ( Magnetic Resonnace Imaging: MRI) sind wichtige Werkzeuge in der Chemie 
und Biologie. MRI ermöglicht die nicht-invasive, dreidimensionale Abbildung weicher 
Gewebe im Inneren des Körpers, sei es der einer Maus oder eines Menschen. Ein 
zunehmendes Interesse besteht an der Durchführung hochauflösenden MRI-Studien an 
Objekten von der Größe biologischer Zellen. 
 
  Durch die Miniaturisierung der MRI-Detektionsspule kann eine erhöhte Empfindlichkeit für 
Analysen an mikroskopisch kleinen Proben erreicht werden. Ein Mikro-MR-Bild erfordert ein 
höchst homogenes Feld in der Region, in der sich die Probe befindet. Ein inhomogenes 
Feld führt zu Bildstörungen wegen der lokalen Variationen der Spin-Präzessionsfrequenz. 
 
  Um die Homogenität innerhalb einer Solenoidem Mikrospule zu erforschen, entwarfen  wir 
ein Model mit Hilfe von ANSYS® Version 8.1 und simulierten das magnetische Feld 
innerhalb der Spulenwindungen. Dafür wurde ein 2-dimensionales, axisymmetrisches 
Modell erstellt. Die resultierenden Eigenschaften des magnetischen Feldes, die wir aus der  
harmonischen Lösung einer Niederfrequenzanalyse erhielten, wurden als Zielfunktion eines 
numerischen Optimierungsprozesses verwendet. 
 
Das Ziel der Optimierung war, die Geometrie der Mikrospule auf ein möglichst homogenes 

magnetisches Feld abzustimmen. Die an ANSYS gekoppelte DOT-Optimierungssoftware 
ermöglichte uns, eine iterative Methode zu verwenden und damit die Homogenität des 
Feldes in der Spule durch Veränderung der Designparameter um bis zu 50% zu erhöhen. 
 
 Des weiteren erfordern die Prognose des Verhaltens das  Design und die Optimierung des 

Mikrospulensystems ein kompaktes Verhaltensmodell für eine genaue und schnelle 
Simulation. In diesem Projekt wurde das Verfahren der Modellordnungsreduktion für die 
harmonische Analyse angewandt. Dabei wurde das Tool mor4ansys verwendet, das am 
Lehrstuhl für Simulation, Institut für Mikrosystemtechnik der Universität von Freiburg, 
entwickelt wurde. Das Ergebnis zeigt eine gute Simulations-Genauigkeit und eine 
beträchtliche Steigerung der Berechnungsgeschwindigkeit. 
 
 
 
 
Stichwörter: Magnetische Kernresonanz, Magnetresonanz-tomographie, Miniaturisierung, 
homogenes Feld, Solenoidem Mikrospule, Niederfrequenzanalyse, ANSYS®, DOT-
Optimierungssoftware, Modellordnungsreduktion, Modelbildung und Simulation, 
Optimierung 
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Introduction 
 
 A historical overview 
 
The discovery and development of Magnetic Resonance Imaging (MRI), based on already 

discovered method Nuclear Magnetic Resonance (NMR), is one of the most spectacular and 
successful events in the history of medical imaging. Nuclear magnetic resonance has been 
discovered simultaneously and independently by Bloch and by Purcell in 1946 and first 
imaging experiments were done by Lauterbur and by Damadian in the 1970s [1]. 
 
Interest in the medical diagnostic possibilities of NMR began in 1971 with the study of the 

differences in relaxation times T1 and T2 between different tissues and between normal and 
cancerous tissue by Damadian. The first whole-body human chest scan was obtained in 
July 1977 in a 0.05 T home-made superconducting magnet with a scan time of 4.5 hours 
and resolution of the order of a centimeter. The technique was further developed to a 
scanning system with a permanent magnet of 0.3 T and became the first commercial MR 
scanner. An important improvement introduced by Garroway, Grannell and Mansfield in 
1974 was the selective slice excitation technique that is generally used today, in which a 
field gradient perpendicular to the selected plane is applied during a tailored excitation 
pulse. Through a combination of excitation pulses and orthogonal gradient pulses a line 
scan technique was developed by the Mansfield group in Nottingham and used for the first 
human whole-body scan in 1978. In the mid-1980s there was a passionate debate on the 
subject of the optimum field strength of MR imagers between advocates of high field (1.5T) 
and low field (0.5 T) systems. The controversy faded away when the initial advantages of 
better signal to noise (S/N) ratio of 1.5 T imagers was later reduced by the development of 
improved signal detection techniques, which enabled low field system to produce images of 
excellent quality. 
 
Improvement in signal detection, fast data handling and gradient technology, advanced 

understanding of spin systems, pulse sequences and artifact suppression have eventually 
eliminated the major problem of the scan time [3].  
  

  A quest for the highest possible resolution ensued, demanding the highest available 
magnetic and gradient field strengths. Now, we would like to mention how MRI is important 
through the review history of awarded Nobel Prizes on this field: 
NMR has had a long and proud Nobel history, starting with the Physics prize awarded to 

Isaac Rabi in 1944 for his resonance method for recording the magnetic properties of atomic 
nuclei. Felix Bloch and Edward M. Purcell followed with the award in Physics in 1952. More 
recently, Chemistry Nobel Prizes were awarded to Richard Ernst in 1991 and Kurt Wüthrich 
in 2002. While Mansfield becomes the first physicist receiving a Nobel award in NMR-related 
work in more than 50 years, Lauterbur is the third chemist to receive the Nobel Prize for 
research in the area of NMR since 1991.The Nobel Prize in Medicine awarded in December 
2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of 
magnetic resonance imaging (MRI) constituted a long overdue recognition of the huge 
impact MRI has had in medical diagnostics and research [2]. The use of MRI for the 
diagnosis of brain and spinal ailments, for the pre- and post-operative studies of cancerous 
tumors and for the investigation of ligament damage four notable examples, there are many 
others has made MRI nearly ubiquitous in modern society. Both the 2003 Nobel Laureates 
were pursuing research in NMR that led them to their seminal studies in the development of 
MRI. Lauterbur had more than a decade's worth of research with multi-nuclear NMR 
ongoing whereas Mansfield was more than six years into his investigations of solid-state 
NMR by the time their primary work began in the early 1970s, leading to the creation of MRI 
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as we know it. Lauterbur was first to publish his initial discovery, a discovery that still 
strongly impacts chemical research today. He showed how variations in the strength of a 
magnetic field could be used to provide spatial information. Up until this discovery, 
variations, or gradients, in the strength of the magnetic field was the demon of NMR, an 
undesirable feature to be obliterated at all cost. Lauterbur managed to turn magnetic field 
gradients, one of the most problematic issues in NMR on their head, to the good fortune and 
better health of us all. In 2003, there were approximately 10,000 MRI units worldwide, and 
approximately 75 million MRI scans per year performed. As the field of MRI continues to 
grow, so do the opportunities in MRI [8]. 
 
Application in micro-world 
 
With the development of mainly clinical MRI, the imaging of smaller biological or other 

samples became the preserve of only a few. Interest in the field was re-awakened by the 
publication in Nature of an image of a toad’s egg [24]. This ‘single cell’ image demonstrated 
that high-resolution microscopy was possible and of interest to biological scientists. Clinical 
MRI had, by now, established itself, providing functional (flow, diffusion and perfusion) as 
well as just morphological information. The scientific community could now see that 
magnetic resonance microscopy (MRM) could provide dynamic information about the state 
of the sample which was not achievable with destructive imaging techniques. MRM 
expanded rapidly in fields such as plant biology, polymers and porous media, aided by the 
availability of wider bore high-field magnets suitable for imaging. Micro magnetic resonance 
imaging (Micro-MRI) technology is similar to clinical MRI and optimized for the study of small 
structures such as single cells. Micro-MRI refers to high resolution MRI.
  
In general, MRI suffers by low limits of detection. Over the past thirty years, the major 

advance in improving limits of detection (LODs) or sensitivity of NMR or MRI has been 
achieved in magnet technology, with steadily increasing static field strengths. Furthermore, 
probe miniaturization also may help to increase the sensitivity. But still the extraction of the 
Nuclear Magnetic Resonance (NMR) spectra of samples having smaller and smaller 
volumes is a real challenge and careful design of the radiofrequency coils as a NMR signal 
detector, ensuring an optimum reception of the NMR signal, are required. For this purpose, 
several probe design criteria such as producing a uniform magnetic field, increasing signal 
to noise ratio, susceptibility matching etc should be fulfilled.    
 
  Outline of this project  
 
In chapter 1 we introduce the principle of magnetic imaging and in the last part of the first 

chapter, we declare that the detection limits of Micro-MRI or MRM can be pushed further by 
taking advantage of microsystem fabrication techniques, on the other hand, by 
miniaturization of the probes. Another important thing in MRI and its receiver coil, to which 
attention should be paid, is magnetic field homogeneity. Homogeneity may increase an 
image's resolution. In chapter 1 we describe why magnetic field uniformity is so important.  
 
Chapter 2 is dedicated to probe miniaturization in MRI and the rationale for using 

microcoils. The coil design criteria are the important part of the second chapter, too. Finally, 
the conventional microcoil types which are widely used in imaging or NMR spectroscopy will 
be introduced and compared with respect to their field homogeneity, sensitivity and intrinsic 
signal to noise ratio. 
  
In order to design an appropriate microcoil, one should simulate its electromagnetic 

behavior. Thus, one needs to deal with a set of governing equations named after Maxwell 
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and to solve them in an appropriate way. In chapter 3 we introduce the basics of 
electromagnetism in the frame of Maxwell's equations and then the numerical solution of 
these equations by means of Finite Element Method (FEM) will be discussed. Chapter 4 
deals with implementation a FEM technique to build a model and simulate it by means of the 
multi-physics software ANSYS. 
 
In chapter 5, with focus on the best coil design, we try to implement the optimization theory 

to optimize the shape design parameters using the DOT software. And finally, in order to 
speed up the microcoil's ANSYS harmonic analysis, we try to introduce and implement a 
model order reduction technique coupled to ANSYS and compare the results with respect to 
computational time and accuracy, in chapter 6.      
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1 NMR Principles and Micro-MRI 
  
 This chapter is divided into two main parts. First, we introduce the physical basics of NMR 
and then elaborate some its applications in cellular imaging. Furthermore, we try to give 
answer to this question: Why the uniformity of magnetic field is important? 
 
 
1.1 Basic concepts of NMR  
  
 The elementary particle spin is a value that can be observed by placing electrons or nuclei 
in a magnetic field. They behave like small magnetic dipoles. In many cases, it is convenient 
to treat the spin as an angular momentum caused by rotating charges, but without the 
radiation of electromagnetic energy. 
 
1.1.1 Spin and its quasi-classical treatment  
 
  In the quantum mechanical treatment, the behavior of spin may be analyzed using 
expectancy values. For all practical purposes, such as MRI, a quasi-classical treatment 
which takes into account quantized properties but uses classical mechanics to describe spin 
behavior is more convenient and yields the same results. More information can be found in 
[6, 7]. 
For the quasi-classical treatment of spin in an external magnetic field, we consider the 

concept of "spin" as a body rotating around its internal axis. See Figure 1.1:  

                                             
Figure 1.1: Rotation of the nuclear momentum about its own axis and about the magnetic field axis [6]. 

 
Then, every nuclei with non-zero nuclear spin I posses a non-zero magnetic dipole 

moment μi
m which is related to its angular momentum Ji by 

                                           .m
i Jiμ γ=      (1.1) 

The ratio γ is called the gyromagnetic ratio and has a different value for each type of 
nucleus. Table 1.1 lists a few isotopes observed by Nuclear Magnetic Resonance (NMR) 
and their spin value, gyromagnetic ratio and abundance. 
  Nuclei with large γ are most easily detected by NMR technique. Almost every element in 

the periodic table has an isotope with a non-zero nuclear spin. NMR can only be performed 
on isotopes whose natural abundance is high enough to be detected. 1H nuclei, due to its 
large γ and high natural abundance, are extensively used in a NMR spectroscopy. 
In NMR, signals originating from the protons of tissue water are observed.  
 The angular momentum is a vector quantity J = (Jx, Jy, Jz). The z component of J, in a 
magnetic field H = (0, 0, Hz), will be quantized:  

                                                      
2z I
hJ m
π

=      (1.2)   
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where mI = -I, -I+1,…,0,…,I-1, I , I is the total spin number and h is a Planck's constant 
(ћ= h / 2л). 
 

Isotope Unpaired 
p+

Unpaired 
nº 

Total spin 
I 2

γ
π

[ MHz/T] Natural 
abundance[%]

1H 1 0 1/2 42.58 99.985 
2H 1 1 1 6.54 0.015 

13C 0 1 1/2 10.71 1.110 
19F 1 0 1/2 40.08 100.000 

23Na 1 2 3/2 11.27 100.000 
31P 1 0 1/2 17.25 100.000 

 
Table 1.1: Magnetic properties of selected particles which are used in NMR [8] 

 
  When placed in a static external magnetic field H0 = (0, 0, Hz), nuclei with nuclear spin I 
can adopt one of the spin states ( 1/2 or -1/2 for I=1/2 and 1, 0 or -1 for I=1)  corresponding 
to possible orientations of the magnetic moment μi

m (parallel or anti-parallel to H0, in the 
case of I=1/2). Figure 1.2 illustrates the resulting possible spin values for atoms having 
I=1/2 and I=1. 
 

 
 
 

Figure 1.2:  The quantized angular momentum and possible energy levels for particles with total spin 
I=1/2 and I=1 when placed into an external magnetic field H0 = (0, 0, Hz) [6].  

 
The two states are separated by an energy amount ΔEpot

                                               0 0

2
r

pot
h HE γμ μ

π
Δ =      (1.3) 

Where, μ0 and μr are respectively the intrinsic and relative magnetic permeability. 
  Since μ0 μr H0= B0 and ћ= h/2л we can rewrite this equation as bellows: 
                                                      0potE BγΔ =      (1.4) 
Where BB0  is the static magnetic flux density. 
The nuclei can undergo a transition between two energy states by absorption or emission 

of a photon. Particles or nuclei in the lower energy state absorb a electromagnetic wave (a 

  Jz= -ћ/2 

Jz= ћ/2 

 Jz= 0

  Jz= -ћ

 Jz= ћ

  H0   H0 

 I= 1/2  I= 1 

ΔEpot = 2γћBB0 

   Radius of sphere 
2 2 2

x y zH J J J= + +
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photon) and ends up in the upper energy state. The energy of this photon ( Emag =hν, where 
ν is a frequency) must exactly match the energy difference between the two states. 
Therefore 
                                         0 0mag potE E h Bν γ= Δ ⇒ =     (1.5) 
In NMR and MRI, the quantity 2лν is called the resonance frequency and the Larmor 

frequency, therefore we can write: 
                                             0 0 02 Bω πν γ= =      (1.6) 
In the NMR experiment, the frequency of the photon is in the radio frequency (RF) range. 

In NMR spectroscopy, ν is between 60 and 800 MHz for hydrogen nuclei [8]. 
When a group of spins is placed in a magnetic field, each spin aligns in one of the two 

possible orientations. At room temperature, the number of spins in the lower energy level, 
Nα, slightly outnumbers the number in the upper level, Nβ. Boltzmann statistics tells us that 

                                                  exp( )
N E
N k

β

α β

Δ
= −

T

i

     (1.7) 

  
Where ΔE is the energy difference between the spin states; kβ is Boltzmann constant,   

1.3805x10-23 J/Kelvin; and T is the temperature in Kelvin. As the temperature decreases, so 
does the ratio Nβ/Nα. As the temperature increases, the ratio approaches one. The signal in 
NMR spectroscopy results from the difference between the energy absorbed by the spins 
which make a transition from the lower energy state to the higher energy state, and the 
energy emitted by the spins which simultaneously make a transition from the higher energy 
state to the lower energy state. The signal is thus proportional to the population difference 
between the states. At thermal equilibrium, the lower energy state (parallel) is slightly more 
populated than the upper one (anti-parallel). For example at 7 T and room temperature, the 
population difference is on the order of 20 ppm. This small difference is responsible for the 
intrinsic low sensitivity of NMR compared to other spectroscopy methods [7]. But, NMR is a 
rather sensitive spectroscopy since it is capable of detecting these very small population 
differences. It is the resonance, or exchange of energy at a specific frequency between the 
spins and the spectrometer, which gives NMR its sensitivity. 
 
1.1.2 The macroscopic behavior of spin 
 
Till now, we have discussed about a single spin and its behavior, but The NMR experiment 

measures a large ensemble of spins derived from a huge number of molecules. Therefore, 
we now look at the macroscopic behavior.  
The sum of the dipole moments of all nuclei is called magnetization (M): 

                                           ( , , ) m
x y z iM M M M Jμ γ= =∑ ∑    (1.8) 

In equilibrium the spins of I=1/2 nuclei are either in the α- or β-state and rotate about the 
axis of the static magnetic field. However, their phases are not correlated. For each vector 
pointing in one direction of the transverse plane a corresponding vector can be found which 
points into the opposite direction. Therefore, the projection of all vectors onto the x-y plane 
(the vector sum of the transverse components) is vanishing provided that the phases of the 
spins are uncorrelated. Figure 1.3 shows the equilibrium state with similarly populated states 
and the phases. 
  However, application of a radiofrequency (RF) field, the so-called B1 field, perpendicular to 
the magnetic field (e.g. along the x- or y-axis) creates a state in which the phases of the 
spins are partially correlated. This state is called coherence. When projecting the vectors 
onto the x-y plane the resulting transverse magnetization is non-vanishing giving rise to a 
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signal in the detection coil. Figure 1.4 shows the coherent state when the orthogonal B1 field 
applied by means of the radiofrequency coil. 
The experiment setup of the NMR includes a radiofrequency coil, which delivers the 
orthogonal B1 field. Simultaneously this coil serves to pick up the NMR signal. 

 
Figure 1.3: Equilibrium state with similarly populated α- and β-states (left), uncorrelated phases 

(middle) and no net phase coherence (right)[6]. 

 
Figure 1.4:  Coherent state of spins in α- or β (left) states and the projection onto the x-y plane 

(middle) and sum vector of the x-y component (right) [6]. 
 

To understand how the magnetization that rotates in the transverse (x, y) plane induces the 
NMR signal it is convenient to look at the vector sum of the transverse components which 
present a magnetic field that rotates in space. Figure 1.5 illustrates the spins precessing at 
different velocities (for different compounds in the sample). 

 
 

Figure 1.5:  Spins precessing at different velocities (and hence have different chemical shifts) are 
color coded [6]. 

The magnitude of the current that is induced in the receiving coil depends on the 
orientation of the magnetization vector with respect to the coil. When the magnetization is 
pointing towards the coil the induced current is at maximum. Because the magnetization 
rotates the induced current follows a sine (or cosine) wave. Spins with different chemical 
shift, different Larmor frequencies, precess at different rates and hence the frequency of the 
current is the Larmor frequency, e.g. the frequency of the precessing spins. See figure 1.6. 
  Spins that belong to nuclei with different chemical environment precess with different 
frequencies. For more complex compounds that contain many different spins the signal in 
the receiver coil is a superposition of many different frequencies. The Fourier 
Transformation (FT) is a convenient mathematical tool for simultaneous extraction of all 
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frequency components. It allows transforming data from the time into the frequency domain. 
Figure 1.7 depicts how the Fourier Transformation extracts all the frequency components 
and pave the ways to make spectroscopy analysis in NMR.  
 

 
Figure 1.6:  Left: Rotating spin with its position at certain time intervals 1-6 are marked. Right: 

Corresponding signal in the receiver coil [6]. 
 
 

             

c B   A 

ν 

Figure 1.7:  Signals from 3 spins with different precession frequencies (left) and their corresponding 
Fourier transforms (right)[6]. 

 
1.1.3 Relaxation Process 
 
When only the static B0 field is present the spins precess about the z-Axis (the axis of the 

BB0 field). To create spin-coherence an additional RF field is switched on, that is 
perpendicular to the axis of the static field (the so-called B1 field). To emphasize that this 
field is turned on for only a very short period of time usually it is called a (RF) pulse. During 
the time where B0 and B1 field are both present the magnetization rotates about the axis of 
the resulting effective field. The effective field is calculated by taking the vector sum of the B0 
and B1 field. 
  The magnetization does not precess infinitely in the transverse plane but turns back to the    
 equilibrium state. This process is called relaxation. Two different time-constants describe 
this behavior: 
 
a) The re-establishment of the equilibrium α-β state distribution (T1). 
b) De-phasing of the transverse component (destruction of the coherent state) which is 
called T2. The T2 constant characterizes the exponential decay of the signal in the receiver 
coil. 
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  The precessing spins slowly return to the z-axis. Instead of moving circularly in the 
transverse plane they slowly follow a spiral trajectory until they have reached their initial 
position aligned with the z-axis (see figure 1.8): 

 
Figure 1.8: left: Trajectory of the magnetization, right: individual x, y and z component 

 
1.1.4 Bloch Equations 
 
The effect of the B1 field on transverse and longitudinal magnetization is described by 

Bloch equations. When a dipole moment placed inside a magnetic field, a force (a torque) 
acts on it such that the dipole moment will be aligned with the direction of the static 
magnetic field. Mathematically this is described by forming the vector product between 
dipole moment and magnetic field. 
                                                             T M B= ×     (1.9) 

Since T (a torque) is equal to ∂J/∂t and considering the equation 1.8, we can find that 

                                           ( )M J T M B
t t

γ γ γ∂ ∂
= = = ×

∂ ∂
    (1.10) 

This equation describes the time evolution of the magnetization. In the presence of an 
additional BB1 field, the components of the field along the Cartesian axes are: 
                               1 0cosxB B tω=  

                                                    1 0sinyB B tω=  

                                                    0zB B=  
Thus, leads to the following set of coupled differential equations which describe the time 
evolution of the magnetization along the Cartesian axes [9]: 

                                 0 1 0
2

( ) ( sin ) ( )x
x y z

MM t M B M B t
t T

γ ω∂
= + −

∂
 

                                0 1 0
2

( ) ( cos ) ( )y
y x z

M
M t M B M B t

t T
γ ω∂

= − + −
∂

   (1.11a) 

        0
1 0 1 0

1

( ) ( sin cos ) ( )z
z x y

M MM t M B t M B t
t T

γ ω ω −∂
= − + −

∂
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Or:                         

                            

2

2

0

1

( )

( )

x

y

z

M
T
M

M J T M B
t t T

M M
T

γ γ γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂

= = = × − ⎢ ⎥∂ ∂ ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

   (1.11b) 

 
1.1.5 Relaxation process and signal detection 
  
Both excitation and detection can be done using a solenoidal coil enclosing the sample 

with its axis perpendicular to BB0. Here, we restrict ourselves to find a solution for equation 
1.11b under ideal pulse conditions, considering that an alternating magnetic field B1xB (t) at 
frequency ω0  applied as an excitation pulse for a duration τ. After a pulse duration τ, the 
magnetization in the laboratory frame of reference is governed by the following set of 
equations [9]: 
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Figure 1.9 Schematic coil configurations for detecting an NMR signal. 
 

Where, M0 is a bulk magnetization aligned along B0 and the θ the excitation flip angle given 
by:                                              
                                                 θ = γB B1 τ      (1.13) 
After the excitation pulse, the NMR signal is obtained by measuring the voltage induced in 

the detection coil by the rotating magnetization, while it returns to its equilibrium position 
along the z-axis. For the purpose of quantifying the signal detected by a particular coil, it is 
useful to introduce the unitary magnetic field BB1u(r), corresponding to the field that would be 
produce by a DC current of 1 Ampere flowing through the coil. The voltage induced for an 
elementary sample volume dVS at position r is given by the principle of reciprocity [5]. This 
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principle states that the induced electromotive force ζ is directly related to the strength of the 
magnetic field B1uB (r) (see figure 1.9). 

                                  1( , ) (( ( ). ( , )))u st r B r M t r dV
t
δζ
δ

= −    (1.14) 

In most of the NMR systems the excitation coil is also used as detection coil [4]. Thus, we 
consider the same coil as a detection coil sensitive to variation of the magnetization along 
the x-axis and assume a uniform magnetic field distribution BB

t M B V t eζ ω ω −= =∫

u s

1u(r)=B1ux and magnetization 
M(r)=M0z in the whole sample volume VS. The induced voltage after a 90º excitation pulse 
may be expressed as (by combining equation (1.12) and (1.14), with an appropriate phase 
delay): 

                                   S t   (1.15) 2/
0 0 1 0( ) ( ) cos( )

s

t T
u s

V

And has the maximum initial amplitude: 
 
                                              0 0 0 0 1( )tS s t M B Vω== =     (1.16) 
Therefore, the NMR signal is measured in the time domain as an oscillating decaying 

voltage induced in the receiver coil by the magnetization in free precession. This signal is 
known as the Free Induction Decay (FID) (see figure 1.10 left).   

 
Figure 1.10 Left: Time-domain NMR signal (FID) and right:  Fourier transform (frequency domain) 

R
e{s (ω

)} 1/πT2 

S(t)

Frequency Time 

  
 In many NMR experiments, the time-domain FID of equation (1.15) is transformed in the 
frequency-domain by a Fourier Transform [7]. The real part of the resulting Fourier transform 
is a Lorentzian and the Full Width at the Half Maximum (FWHM) of the real part is given by 
1/πT2, while the maximum amplitude at the resonance is: 

                                                      0 0 2
1
2

A S T=

distortions will be caused by the RF coil at the small size scales used in NMR. These 

     (1.17)  

 It means that the line-width (resolution) and the amplitude of the NMR signal, in the 
frequency-domain, clearly depend on the relaxation time (T2).                                                                           
 
 
1.1.6 The importance of magnetic field uniformity 
  
The definition of RF homogeneity requirements, and their incorporation into receiver coil 

design, generally requires a basic understanding of NMR signal detection, which has been 
already discussed in the previous pages. In addition to the distortions of magnetic field 
homogeneity which are caused by the sample at the high magnetic fields, additional  
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distortions are very difficult to correct with shim coils *, since most standard shim coils will 
not be effective over the small dimensions of the sample [12].In the presence, within the 
sample, of a perturbation field ΔB(r) superposed to the polarizing field B0, the resonance 
frequency ω0 becomes position-dependant (consider equation 1.6): 
                                    0 0( ) ( ) ( )r B B r B rω γ γ= +Δ =     (1.18) 

t
Combined with equation 1.12, equation 1.18 implies that the magnetization corresponding 
o spin packets at various locations will rotate at different frequencies in the xy-plane. As a 

function of time, this results in a loss of coherence of the transverse magnetization and thus 
a more rapid decay of the FID than that due to T2 relaxation only. (Assuming the 
perturbation of the field-strength distribution to be Lorentzian, the spin-spin relaxation T2 
may be replaced by an effective relaxation time T2

*) [7]. In the frequency-domain, this 
corresponds to an additional broadening of the resonance line. From equation 1.17, we 
observe that an inhomogeneous static magnetic field not only increase linewidth, but also 
decreases the signal amplitude in the frequency-domain. As mentioned, using the principle 
of reciprocity (equation 1.14), we can write the signal detected per unit volume as: 
                                      0( ) ( ) ( )puv xy xyr B r M rξ ω=      (1.19)  

d Bxy (r) at each point r inIf we illustrate Mxy (r) an  terms of variations ΔMxy (r) and ΔBB

f
xy (r) 

rom values Mxy (0) and BB

xyM r
xy (0) defined at the coil center [10]: 

                          0( ) ( (0) ( )) ( (0)puv xy xy xyr B B r M ( ))ξ ω= −Δ × −Δ  (1.20)  
viation of a NMR response at any point r relative to th

c

                     

The fractional de e response at the 
enter of a coil (0)puvξ is then given by 

(0) ( ) (r B r ) ( ) ( ) ( )
( )( )

(0) (0) (0) (0) (0)
puv puv xy xy xy xy

puv xy xy xy xy

M r B r M r
B M B M

ξ ξ
ξ

− Δ Δ Δ Δ
= + −  (1.21) 

This equation shows how the NMR signal depends on local value of the transverse 
magnetization Mxy (r) and the field strength BB

, with high spatial resolution in three 
d

.1.7 How to treat uniformity 

here exist several ways in which the acquired FID may be treated in order to improve the 
r

e chosen according to the experimental conditions. 

                      (1.22)  
part of the FI

s

* Shim coil: The shim system is a device that corrects for locally slightly different magnetic fields. 

xy (r).  
Now, it is easy to understand why a MR image
imensions, requires a highly homogenous magnetic field within the region of interest and 

an inhomogenous magnetic field will lead to image artifacts due to the localized variations in 
spin precession frequency [10].
 
1
 
T
esulting NMR spectrum. One of the methods is known as apodization [7]. If the signal 

decays rapidly as a result of magnetic field inhomogeneity (i.e. short T2*), the lines, as 
already discussed, are intrinsically broad and there is no point in collection data for a long 
time. Additionally, mostly noise will be acquired in the later part of the acquisition time, 
degrading Signal to Noise Ratio (SNR). 
  The acquisition time should therefore b
Assuming an exponential decay with a time constant T2*, the signal-to-noise ratio can be 
maximized by multiplying the original time-domain signal by a function called the matched 
weighting function: 

                              2/ *( ) t T
mh t e −=

By this process, the later D containing a higher proportion noise is 
uppressed, resulting in a higher apparent signal-to-noise. The trade-off is a resonance line  
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broadened by a factor of 2. If such broadening is unacceptable, the time constant of the  
weighting function can be increased to a value when line broadening becomes insignificant. 
In this case, the spectral line can be sharpened, but at the cost of SNR [7].      
 
Another way to treat the inhomogeneity, before doing any experimental setting 

i

1.2 NMR application in cellular imaging( Limits and Advantages) 

In this section we introduce a very special application of the nuclear magnetic resonance in 

 already discussed, clinical MRI could provide functional (flow, diffusion and perfusion) 

 The highest resolution reported for Micro-MRI to date has been achieved by Lee et al. with 
a

ere, we would like to show some images obtained by Micro-MRI technique and to 
in

mprovements, is to optimize the coil shape in order to decrease magnetic field non-
uniformity within the coil, which is the final goal of this project.  
  

 
  
biology and medical sciences and leave the other applications which are not correspondent 
to our goals undiscussed. 
  
As
and morphological information. Magnetic resonance microscopy (MRM) provides dynamic 
information about the state of the sample which was not achievable with destructive imaging 
techniques. (Micro-MRI) technology is similar to clinical MRI and optimized for the study of 
small structures such as single cells. Micro-MRI refers to high resolution MRI. It is based on 
the physical phenomenon of Nuclear Magnetic Resonance (NMR). “High-resolution” here 
means a resolved voxel volume in the range of 10 × 10 × 10 μm³ = 1 pl. (For standard 
clinical applications, the resolution is about 1 × 1 × 1 mm³ = 1 μl). A request for the highest 
possible resolution demands the highest available magnetic and gradient field strengths. In 
general, for the very high resolution a combination of high magnetic field strength (>10 T), 
high gradient field strength (in region of 1 Tm−1) and a highly sensitive RF coil having a high 
filling factor (90% if coil encloses whole sample, or a surface coil which is optimal for a 
region of interest) is required [15]. But, there are practical limits imposed by magnetic field 
strength and imaging time which currently limit practical resolution to about 1.0μm. 
Ostensibly this limit has been reached [15]. Some limits of solid, liquid and gas states have 
been already discussed in details by P. Glover and P. Mansfield [15]. For Further studies on 
limits, one can refer to this article. 
 

 resolved voxel volume of 75 μm³ (1 × 1 × 75 μm³) [16].  Thus, MR microscopy of cells has 
advanced to voxel resolutions of just a few microns in all three spatial dimensions, and to as 
little as one micron ‘in-plane’ resolution.
 
H
troduce the currently resolution limits of this method. The image shown in figure 1.11 has 2 

μm in-plane resolution, with 200 μm3 voxel volume. While the images obtained by Lee et al. 
have excellent in-plane resolution, the relatively large slice thickness is not adequate for 
imaging objects lacking 2D symmetry. By employing magnetic field gradients as large as 5.8 
T/m, micro-receiver coils with diameters smaller than 100 μm and a ‘constant-time-imaging’ 
pulse sequence [20, 21] Ciobanu et al. report fully three dimensional images obtained on 
both phantoms and real biological samples. Figure 1.12 shows the 3D image from Ref. [22]. 
Figure 1.13 shows the Ciobanu et al. image of a spirogyra alga. [13] The spirogyra (see 
microscope photo in figure 1.13a) is cigar-shaped, with diameter 40 μm. The micro-pipette 
containing the spirogyra cell, immersed in water, as shown in figure 1.13a, has inner 
diameter 55 μm. The micro-coil 250 μm long, covers 5–6 chloroplast spiral windings. The 
MR image is shown in figure 1.13b. 
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 Despite of having resolution limits, the strength of Micro-MRI is to reveal information that 
cannot be obtained by non-invasive way. For example, it becomes possible to analyze in 
vivo distribution of metabolites in the cell matrix, local mapping of water diffusion constant or 
 

 
 

Figure 1.11 The 1H images [16] at 14.1 T of geranium leaf stems in the large (a) and small (b) cell 
regions with voxel size of 2 x 2 x 50 μm3. (c) An optical microscope image of the geranium leaf stem 

Reprinted from Ref. [16] 
 

 
 

Figure 1.12. (a) Microscope photograph [22] of sample imaged in (b). The sample consists of a quartz 
micro-capillary, initially 1 mm outer diameter, pulled to an outer diameter of 73 μm and inner diameter 

53 μm, filled with water and 39 μm diameter fluorescent polymer beads. (b) 3D MRI microscopy 1H 
image of the sample shown in (a) (at 9 T). Reprinted from Ref. [22]. 

 
spatially resolved microspectroscopic analysis. Thus, it can provide a unique view of a 
variety of physiological processes. Furthermore, the applied magnetic fields have no known 
influence upon the living organism. That makes it possible to observe the undisturbed 
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object. In a way, this is like overcoming the “biological uncertainty principle”, because other 
single-cell microbiology techniques, such as e.g. fluorescence microspectroscopy or flow
 

 
 

Figure 1. 13 (a) Microscope photograph [13] of the sample imaged in (b). The sample consists of a 
single cell spirogyra alga of cylindrical shape with diameter 40 μm and length of several hundred 
microns. The NMR receiver coil is wound over a span of 250 μm located in the figure. (b) 3D MRI 

microscopy 1H image of the sample shown in (a) (at 9 T). Reproduced from Ref. [13]. 
 
 
cytometry, manipulate the object of interest in some or the other way [14]. Another very 
important advantage is that the non-invasive, non-destructive nature of Micro-MRI allows for 
long-term studies of one and the same object, and thus simultaneously reduces the number 
of test objects needed [17, 18, 19].
 
NMR spectroscopy can be also used to determine the full tertiary structure of small organic 

compounds or proteins, which is of particular interest in the area of chemistry in therapeutic 
drug research. In the medical field, Micro-coils can be integrated with catheter tools, too. 
They are used for NMR spectroscopy or Micro-MRI of the intravascular walls, and they also 
can be used for catheter tracking [23].
 

  For the future, Micro-MRI is an extremely promising technique to supplement existing 
single cell microbiology tools and techniques. The limits of detection and the resolvable 
voxel size have not yet reached its ultimate limits and can be pushed further by taking 
advantage of microsystem fabrication techniques. The full range of applications still remains 
to be developed.
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2 Microcoil 
 
Over the past thirty years, the major advance in improving limits of detection (LODs) or 

sensitivity of NMR or MRI has been in magnet technology, with steadily increasing static 
field strengths. Operating frequencies of 900 MHz has already been achieved. In the last 
part of the first chapter, we declare that the detection limits of Micro-MRI or MRM can be 
pushed further by taking advantage of microsystem fabrication techniques, on the other 
word, by miniaturization of the probes. In general, the radio frequency (RF) receiver coil 
should closely conform to the sample to ensure good detection sensitivity. A properly 
designed NMR probe will maximize both the observe factor, which is the ratio of the sample 
volume being observed by the RF coil to the total sample volume required for analysis, and 
the filling factor, the ratio of the sample volume being observed by the RF coil to the coil 
volume [32]. 
 The miniaturization of NMR probes thus involves two advantages:  

1) Increased sensitivity which without it the analysis of such low concentration             
compounds would be impossible, and 
2) Increase of filling factor by matching the probe to the sample volume [14].
But still the extraction of the Nuclear Magnetic Resonance (NMR) spectra of samples 

having smaller and smaller volumes is a real challenge. Either these reductions of volume 
are dictated by the difficulties of production of sufficiently large samples or by the 
necessities of miniaturization of the analysing system, in both cases a careful design of the 
radiofrequency coils, ensuring an optimum reception of the NMR signal, are required. 
 

2.1 Coil design and rationale for miniaturization 
 
In this chapter, we will discuss the coil design theory and the rationale for the coil 

miniaturization, in details. 
 

2.1.1 Sensitivity analysis 
 
Thus, the second approach to improving NMR LODs is the use of extremely small coils 

(microcoil) as magnetic resonance detectors. It has long been recognized that reducing the 
diameter of the coil increases its sensitivity [25, 26]. 
The exact definition of a size range for defining a "microcoil" is somewhat arbitrary, and 

indeed has never explicitly been defined in the literature. For the purpose of this project, we 
limit the term microcoil to any coil having a size in micron (μ) range from 1 to 100s μ. Now, 
we try to derive equations which describe the intrinsic sensitivity of RF coils, showing why 
this sensitivity increases as the diameter of coil is reduced. The solenoidal geometry is 
highlighted, since it comprises the majority of NMR or MRI microcoils constructed so far. 
The signal-to-noise ratio (SNR) is a well accepted standard to measure the quality of an 

NMR experiment, both for spectroscopy and imaging studies. The signal-to-noise ratio of a 
NMR experiment is defined as the peak signal divided by the root mean square (rms) of 
noise [25, 26]: 
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Where k0 is a constant which accounts for spatial inhomogeneities B1 field, k is the 
Boltzmann's constant, I is the spin angular momentum quantum number, γ is the 
gyromagnetic ratio, N is the spin density (no. of spin per unit volume), h is Plank's constant, 
T is the absolute temperature measured in Kelvin, ω0 is the Larmor frequency and finally the 
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factor B1/i, the magnetic field per unit current, represents the coil sensitivity as can be 
understood by the principle of reciprocity.  
The noise Vnoise in an NMR experiment is primarily thermal noise which is generated in the 

receiver coil and sample and measured over the receiver's frequency bandwidth Δf : 
                                          4noise tV kTR f= Δ      (2.2) 
Where T assumed to be a common sample and coil temperature [K] and Rt represents 

ohmic losses (will be discussed later in section 2.1.2).   
 If we express the SNR in terms of quantities that we may influence by coil design or 
changing the MRI experiment's setup the equation 2.1 can be rewritten as: 

                                                
2 1

0 .

t

B
iRSN

R

ω
∝      (2.3) 

Which, as already discussed, ω0= γBB0 is Larmor frequency. Therefore, it makes sense to 
perform the MRI experiment with the highest field strength (B0B ) available in order to get 
higher SNR.  
  Now, the question may arise what is directly related to the size of the receiver coil? The 
answer is the coil sensitivity (B1/i). For a highly efficient RF coil it is the function 

1 / tB i R  
which will reflect the overall SNR. It is obvious that this may be achieved by maximizing B1 /i, 
minimizing

tR or a combination of both.  
  For a solenoid of n turns (where n>>1), length h, radius r and carrying a current I, the 
spatial distribution of the magnetic field within the coil can be calculated from the Biot-Savart 
law. The implicit assumption is that the spacing between the coil turns is small compared to 
the radius of the coil, so that the current density can be approximated by a single-turn 
conducting sheet. The magnetic flux density (B) at the center of the coil is then given by [26]  

                                                  
2 24
niB μ

r h
=

+
     (2.4) 

Where, μ is the permeability of free space. In the case of h>>r, this simplifies to 

                                                      
ni
h

B μ
=      (2.5) 

The on-axis magnetic flux density at either end of the coil (BBend) is given by 

                                                  
2 22

end
niB μ

r h
=

+
     (2.6) 

Again, using the simplification that h>>r 

                                                       
2d
ni
henB μ

=      (2.7)  

  Therefore, the magnetic field at the ends of a solenoid is one half that at the center. In 
chapter 5 we will introduce a variable pitch in the coil to get optimum RF homogeneity in the 
center half of the sample space. In principle this is similar to the classical trick of so-called 
“end compensated” RF coils in which the outermost windings were squeezed to a slightly 
smaller pitch. 
If equation (2.4) is re-expressed, then the sensitivity (BB1 /i) can be directly related to the 
diameter of the coil: 

                                                  1
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  Therefore, assuming that the length to diameter ratio (h/d) is kept constant, the coil 
sensitivity will increase at the inverse of the diameter of the coil (See figure 2.1). The graph 
in figure 2.1 (after Morris [27]) shows the SNR/volume variation with coil diameter (d). Down 
to a certain size, the graph has a d−1 characteristic as would be expected from above simple 
calculation. However, below this, the skin depth (will be discussed in section 2.1.3) of the 
conductor dominates and the gradient is d−1/2. Morris estimates that the transition diameter is 
d = 300 μm at 300 MHz. At diameters less than 2 mm the coil's self-resistance dominates, 
biological samples of normal conductivity having little effect. This latter regime may be 
exploited further by reducing the self-resistance using high-temperature superconductive 
(HTS) films to build the coils.  

 
Figure 2.1 Relationship between SNR per unit volume and solenoid coil diameter in the microscopic 
regime where sample loading may be neglected. The graph shows how the skin depth effect in the 
coil wires dominates for small diameters. The intercept at (c) depends on wire type and diameter, 

geometry and frequency. At 300MHz this would correspond to a coil of about 300μm diameter [15]. 
 
So, solenoidal receiver coils that closely conform to the size and shape of small samples are 
effective for improving NMR sensitivity. But in practice, there are some limits to fabricate or 
using of small enough coils. Microcoils with diameters as small as 50 microns can be wound 
using conventional winding techniques [27]. The fabrication methods and comparisons have 
been discussed in ref. [14] in details. Three other factors can however limit a coil's minimum 
size, and therefore its SNR performance. These include the sample's overall dimensions, as 
well as the degree of spatial uniformity required in both static and RF magnetic fields [27].  
 
2.1.2 Noise analysis 
 
 As already mentioned, the noise Vnoise in an NMR experiment is primarily thermal noise 

which is generated in the receiver coil and sample and measured over the receiver's 
frequency bandwidth Δf  (See equation 2.2). In this equation, T assumed to be a common 
sample and coil temperature [K] and Rt represents ohmic losses in the coil, connecting 
wires, tuning device as well as magnetic and dielectric losses in the sample and surrounding 
structures. The major sources of ohmic loss are the resistance of the coil itself, Rcoil, and the 
wires connecting to the matching/tuning and amplification circuitry Rlead, and losses due to 

1/d

1/√d 

Log (S
N

R
) (c) 

Log (d) 
Coil Diameter d 
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eddy currents in the surrounding substrate, RAC (will be discussed in section 2.1.3). Also, 
dielectric losses, Rdiel,are not negligible in case of biological, conducting samples and can 
only be minimized by integration of distributed capacitance [11].   
 

2.1.3 Skin and proximity effects 
 

  Now, we consider skin and proximity effects taking place in a coil's wire. When an 
alternating current is passed through a conducting wire, an alternating magnetic field is 
created with flux lines concentric with the axis of the wire. This field induces eddy currents 
within nearby wires and also within the wire itself [7]. The skin effect is the tendency of an 
alternating electric current (AC) to distribute itself within a conductor so that the current 
density near the surface of the conductor is greater than that at its core. That is, the electric 
current tends to flow at the "skin" of the conductor. The skin effect causes the effective 
resistance of the conductor to increase with the frequency of the current. The effect was first 
described in a paper by Horace Lamb in 1883 for the case of spherical conductors, and was 
generalized to conductors of any shape by Oliver Heaviside in 1885. The skin effect has 
practical consequences in the design of radio-frequency and microwave circuits [28, 29]. 
Figure 2.2 shows the skin effect and the skin depth (δ) within a conductor. 

 

Figure 2.2 Skin effect (left) and effective area Aeff (right) [14]. 

Skin depth is defined as the depth below the surface of the conductor at which the current 
density decays to 1/e (about 0.37) of the current density at the surface. It can be calculated 
as follows [28]: 

                                                             2ρδ
ωμ

=      (2.10)   

Where ρ is resistivity of conductor,ω angular frequency of current = 2π x frequency and μ 
absolute magnetic permeability of conductor. For copper, the skin depth is around 3.8 μm at 
300 MHz. 

  In physics, proximity effects are group of effects where substances behave differently when 
near, or proximate, to one another. If an AC current flows through one or more other nearby 
conductors, such as within a closely wound coil of wire, the distribution of current within the 
conductor will be constrained to smaller regions. The resulting current crowding is termed 
proximity effect [28, 29]. As a result, the current density becomes asymmetric. The 
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combination of skin and proximity effects significantly increase the AC resistance of the 
conductor when compared to its resistance to a DC current. At higher frequencies, the AC 
resistance of a conductor can easily exceed ten times its DC resistance. The additional 
resistance increases electrical losses which, in turn, generate undesireable heating. The coil 
AC resistance has often been axpressed as RAC = RDC.(1+F+G) which F is the skin effect 
and G the proximity effect factor [7, 33].  

2.1.4 Equivalent circuit of a coil 
 
An inductor coil has a complex impedance Z, which its real and imaginary parts vary as a 
function of frequency. It is convenient to replace the inductor by an equivalent circuit 
consisting of ideal circuit elements. The simplest equivalent is an inductance L in series with 
a resistance R. One can define the quality factor for a LR circuit as: 

                                                     
Im{ }
Re{ }

Z
Q

Z
= = ωL/R    (2.11) 

 (The Q-factor or quality factor is a measure of the rate at which a vibrating system 
dissipates its energy. A higher Q indicates a lower rate of energy dissipation. For example, a 
pendulum suspended from a high-quality bearing, oscillating in air, would have a low one. 
For very strong damping, Q<1, the system is so strongly damped that it never completes a 
single oscillation and in the limit of Q = 0, it simply decays exponentially toward equilibrium. 
When the system is driven, its resonant behavior depends strongly on Q. Resonant systems 
respond to frequencies close to their natural frequency much more strongly than they 
respond to other frequencies. A system with a high Q resonates with greater amplitude (at 
the resonant frequency) than one with a low Q factor [28].)   
 
A more realistic is that figure 2.3, where an additional capacitor C shunted across the 
terminal is added to account for the coil's self capacitance.    
 

 
Figure 2.3 High frequency equivalent circuit of an inductance coil 

The circuit of figure 2.3 belongs to the family of LCR resonance networks. For a simplified 
model of our coil as shown in figure 2.3, the coil self-resonance frequency, ω , is [7, 14]:  coil

                                                   21 ( )coil
R

LC L
ω = −     (2.12) 

 
The coil self-resonance frequency should be slightly larger than the Larmor frequency of the 
MRI experiment so that the coil can be tuned (for example 400 MHz would be a desirable 
value for 300 MHz). If (R2C)/L<<1, the corresponding quality factor is: 

                                                1
coil coil

L LQ
R R C

ω= =     (2.13) 
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As already discussed, to maximize SNR, the series resistance should be minimized (see 
equation 2.3). According to equation 2.13, this is equivalent to maximizing the Q-factor for a 
given inductance value. Therefore, the self-resonance frequency and the Q-factor of a coil 
are also a good indication of its potential performance as an NMR detector.  
 
2.1.5 Susceptibility 

  In electrical engineering, the magnetic susceptibility is the degree of magnetization of a 
material in response to an applied magnetic field. The dimensionless volume magnetic 
susceptibility, represented by the symbol χν  is defined by the M= χνH, where M is the 
magnetization of the material (the magnetic dipole moment per unit volume), measured in 
amperes per meter, and H is the applied field, also measured in amperes per meter (From 
Wikipedia, the free encyclopedia).  
  For most materials, the magnetic susceptibility is in the ppm range. However, for large 
magnetic fields, the effect of local variations in χν cannot be ignored and results in undesired 
image artifacts in MRI experiments. The close proximity of the coil wires to most of the 
sample will adversely affect the spectral resolution. As was described by Webb [26], 
possible workarounds are the immersion of the coil in a material with susceptibility similar to 
that of the coil. In this way one mimics an infinite cylinder of given susceptibility in which the 
static field will be homogeneous. Alternatively the coil can be designed of multiple layers of 
different metals (e.g. aluminum and copper) with compensating susceptibilities. 
 
 
2.2 Microcoil types 
 
  In this section we introduce 3 microcoil types which are commonly used in NMR 
experiments and then we compare their specifications. 
 
2.2.1 Solenoid microcoils 
 
   The classical geometry to create a magnetic field with an electrical current is the solenoid 
coil or helix. Even for a limited number of windings this geometry provides a reasonable 
homogeneous BB1 field and a good filling factor is possible by winding the coil directly onto a 
holder containing the sample. Figure 2.4 shows an integrated solenoidal microcoil. 
Miniaturization to a scale of several hundred microns is not very difficult although the wire 
diameter (typically 20 to 50 micron) becomes very small and a freestanding coil is a very 
delicate object [30]. 
A reduction to below 100 micron diameter is possible but the machining and handling of 
such coils will be rather tedious. For this reason other microsystem fabrication technology 
such as bulk micromachining, LIGA and micro-injection molding should be applied [14]. 
For solenoid coils adding more turns to the coil will enhance the BB1/i ratio and thus both the 
inductance and the signal response. At the same time the coil resistance will increase 
linearly, so the improvement in sensitivity will be proportional to the square root of the 
number of turns (n). At the same time we will have a larger ohmic heating at the center of 
the coil and an enhanced danger for arcing, so the optimum is generally found for only a 
limited number of turns. Besides RF performance, static field distortions due to susceptibility 
effects are an important factor in the design of microcoil probeheads.  
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Figure 2.4 Integrated solenoid microcoil and capacitor circuit. Top: actual photograph to indicate the 
size. The microcoil has a free inner diameter of 300 μm, located in the centre of the image. Bottom: 

schematic representation to illustrate the integrated design with the solenoid embedded in the centre 
of a tuned capacitor to provide an LC circuit with minimized losses [30]. 

 
 
2.2.2 Planar microcoils 
 
  The most common geometry used in planar microcoils is based on a spiral design with the 
center winding contacted to the outside using a connection to another layer which is 
electrically isolated with a thin oxide layer. Figure 2.5 depicts a planar coil with the B1 field 
intensity which is represented in a color map. The most commonly used sample position is 
indicated in the red rectangle with the RF field pointing in the axial direction. In this 
configuration the axis of the RF coil will be oriented perpendicular to the external static field 
BB0. An alternative orientation is indicated in yellow for a thin layer sample. 
 

 
Figure 2.5 Planar microcoil with 6 windings, inner diameter 300 μm, outer diameter 1.4 mm [31] 

 
Nevertheless, a detailed analysis shows that such a surface spiral has some serious 

drawbacks, compared to a helical coil. First, the outermost windings are much less efficient 
in the sense that they contribute less to the centre axial field while they largely dominate the 
resistive losses. Second, the fields produced by the outer windings cause considerable eddy 
currents in the centre windings adding additional losses and lowering the field homogeneity 
in the centre region. For this reason the optimum is found for only a few windings, and thus 
a rather low inductance [30, 32]. Figure 2.6 shows a micro-fabricated planar coil with a very tiny 
sample inside the coil.  
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Figure 2.6 Microscope photograph of the 100 mm microcoil. The black spot near the center of the 
microcoil is the sample used for the experiment [30] 

 
2.2.3 Saddle microcoils 
 
  The saddle coil (Figure 2.7) shows the most complex geometry of these three coil types. 
The B B1 field is generated primarily by the four vertical wire segments. Due to this coil 
geometry, the B1B  field of a saddle coil is more homogeneous in z direction than that of a 
planar coil. The saddle coil can be formed from wire, but it is also often etched from thin 
copper foil, which is then adhered to glass or PTFE tubing. The latter procedure leads to a 
high geometric precision, resulting in better BB1 homogeneity. The saddle coil is easily 
accessible and provides a good ‘filling factor’ of the usable area in the magnet bore. For 
these reasons it is widely used in NMR microscopy. However, these advantages are 
achieved at the price of decreased sensitivity. Compared to a saddle coil, the sensitivity 
performance of a solenoidal coil of the same dimensions is approximately three times better 
[12]. 

 

 
Figure 2.7 Field profile for a typical saddle-coil [30] 
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2.2.4 Comparison 
 
 Table 2.1 shows the specification of different coil types which have already been 
discussed. The micro solenoid and surface coil are actual probes that are experimentally 
verified, in this comparison. The other geometry is analyzed using finite element methods. 
Actual values for the sensitivity correspond to coil sizes that are not fully optimized and 
should be treated as typical values. The RF field BB1 is normalized to the number of turns to 
make the comparison more relevant.  As expected, the solenoid gives reasonable field 
homogeneity, coupled with a good sensitivity if the windings are placed on a helix with 
optimized variable pitch. However, it lacks the possibility of sample heating [30]. 

 
 

Specifications Solenoid Saddle coil Planar coil 
No. of turns [n] 12 1 6 

BB1/i.n [mT] 1.35 1.15 1.6 
Relative sensitivity 1 0.35 0.57 

BB1 homogeneity + 0 – 
Sample heating – 0 – 

 
Table 2.1 Comparison of different coil geometries that contain the same amount of sample, in this 

case 50 nL. 
 
In this project, consequently, solenoidal coil geometry has been chosen for its superior 

magnetic field homogeneity. 
 
2.3 Summary of coil design specifications 
 

1) A micro-MR image requires a highly homogenous magnetic field within the region of 
interest. An inhomogenous magnetic field will lead to image artifacts due to the 
localized variations in spin precession frequency. Consequently, a solenoidal coil 
geometry should be chosen for its superior magnetic field homogeneity. 

2) It is desirable that the chosen technology allows for compensation of susceptibility 
mismatches of the surrounding material. One way to achieve this is to combine 
different materials with positive and negative χν values to match the susceptibility of 
the sample or the surrounding material. 

3) To achieve a high SNR, the signal from the sample has to be maximized by 
increasing the “filling factor”. The coil dimensions therefore should be matched to the 
sample dimensions as closely possible. The coil volume is thus determined by the 
size of typical cell cultures of more than 10³ individual cells, where a single cell has a 
typical diameter of 10 ~ 20 μm. Thus, the coil diameter should be in the range of at 
least ~100 μm. 

     4)  Furthermore, noise has to be minimized. The major sources of ohmic loss are the    
resistance of the coil itself, and the wires connecting to the matching/tuning and 
amplification circuitry and losses due to eddy currents in the surrounding substrate. 
Also, dielectric losses are not negligible in case of biological, conducting samples 
and can only be minimized by integration of distributed capacitance. The ohmic 
losses minimization also leads to higher Q-factor of a coil. 

 
Our efforts in this project, mostly concentrated on uniformity of magnetic field within the 

coil. Since, we focus on micro solenoidal coil the other objectives of the coil design, such as 
filling factor and high SNR, are fulfilled.  
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3 Electromagnetic simulation 
  
   For building a microcoil model and simulate its electromagnetic behavior as a RF receiver 
in MRI, we need to deal with a set of equations named after Maxwell and to solve them in an 
appropriate way. It should be mentioned that most practical problems in electromagnetics 
cannot be solved purely by means of analytical methods, e.g. radiation caused by a mobile 
phone near a human head, shielding of an electronic circuit by a slotted metallic box, etc. In 
many of such cases, numerical methods in electromagnetics can be applied in an efficient 
way to come to a satisfactory solution. In this chapter, we try to introduce the basics of 
electromagnetism in the frame of Maxwell's equation and then the numerical solution of 
these equations by means of Finite Element Method (FEM) will be discussed.  
 
 
3.1 Maxwell's equations 
 
In electromagnetics, Maxwell's equations are a set of four equations, developed by James 

Clerk Maxwell, that describe the behavior of both the elecrtic and magnetic fields, as well as 
their interactions with matter. Maxwell's four equations express respectively, how electric 
charges produce electric fields (Gauss' law), the experimental absence of magnetic 
monopoles, how currents and changing electric fields produce magnetic fields (the Ampere-
Maxwell law), and how changing electric fields produce electric fields (Faraday's law of 
conduction). Table 3.1 describes these equations in both differential and integral forms. 
 

Name Differential form Integral form 
Gauss's law 
for electricity .div D ρ

→

=  . .
v v

D d A dVρ
→ → →

∂

=∫∫ ∫∫∫  

Gauss's law 
for 

magnetism 
. 0div B
→

=  . 0
v

B d A
→ →

∂

=∫∫  

Faraday's law 
of induction curl E B

t

→ →∂
= −

∂
 . .

A A

E d s B d A
t

→ → → →

∂

∂
= −

∂∫ ∫∫  

Ampère's law 
(with 

Maxwell's 
extension) 

curl H J D
t

→ → →∂
= +

∂
 . ( )

A A

H d s J D d A
t

→ → → → →

∂

∂
= +

∂∫ ∫∫  

Table 3.1 Maxwell's equations in differential and integtal forms, derived from ref. [34].  

Where [C/mD
→

2] denotes the electric displacement also called the electric flux density, 

[v/m] is the electric field,E
→

B
→

[T or W/m2] is the magnetic flux, the magnetic field is H [A/m], 

[A/m

→

J
→

2] is the current density and finally ρ[C/m3] is free electric charge density.   
 
Together with the material equations: 

                             =ε.               D
→

E
→

B
→

=μ. H        and    J = κ. E    (3.1) 
→ → →
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Maxwell's equations describe the behavior of the electromagnetic fields. ε,  μ and κ hold the 
material properties. Usually, they are scalars which depend of course on the location and 
maybe on the field strength and the time. 
  Gauss' law for electricity is displayed (table 3.1) in integral form and in differential form. In 
integral form, it states that the electric flux out of any closed surface is proportional to the 
total charge enclosed within the surface. In differential form, the divergence of the electric 
flux density gives a measure of the source density. Gauss‘s law for magnetism is displayed 
(table 3.1) in integral form and in differential form. In integral form, it states that the net 
magnetic flux out of any closed surface is always equal to zero. As the divergence of a 
vector field is proportional to the source density, Gauss’s law for magnetism in differential 
form states that no free magnetic charges exist. Faraday's law of induction states (same 
table) that the line integral of the electric field around a closed loop is equal to the negative 
of the rate of change of the magnetic flux through the area enclosed by the loop. This line 
integral is equal to the generated voltage or electro-motive-force (emf) in the loop, so 
Faraday's law is the basis for electric generators. It also forms the basis for inductors and 
transformers. Finally, Ampère's law states (same table) that the line integral of the magnetic 
field around a closed loop is equal to the sum of a) the rate of change of the electric flux and 
b) the conduction and impressed current density through the area enclosed by the loop. 
More information about Maxwell's equations can be found in any course books of 
electromagnetic e.g. [36, 37]. 
 
3.2 Classes of electromagnetic problems 
 
Electromagnetic fields can be classified into the following classes: 

1) Static fields: Can be also classified into electrostatics and magnetostatics. In 
electrostatics the electric field is not time dependent, so 0E

t

→∂
=

∂
(or curl E

→
=0). From 

Faraday's law, this assumption implies the absence or near-absence of time-varying 

magnetic fields: 0B
t

→∂
=

∂
. In other words, electrostatics does not require the absence of 

magnetic fields or electric currents. Rather, if magnetic fields or electric currents do exist, 
they must not change with time, or in the worst-case, they must change with time only very 
slowly. In magnetostatics the magnetic fields are static. Magnetostatics is the study of static 
magnetic fields. In electrostatics, the charges are stationary, whereas here, the currents are 
stationary. As it turns out magnetostatics is a good approximation even when the currents 
are not static as long as the currents do not alternate rapidly. In this case, starting from 
Maxwell's equations, the following simplifications can be made: Ignore any electrostatic 
charge, ignore the electric field and presume the magnetic field is constant with respect to 

time. So this means that = D =0, divE
→ →

B
→

=0 and finally, curl = . The quality of this 
approximation may be guessed by comparing the above equations with the full version of 

H
→

J
→

Maxwell's equations (table 3.1) and considering the importance of the terms that have been 

removed. Of particular significance is the comparison of the term against the term. 

If the term is substantially larger, then the smaller term may be ignored without significant 
loss of accuracy. 

J
→

/D t
→

∂ ∂

J
→

 2) Time varying fields: The most general problem to investigate is an arbitrary     
dependency of the fields in time. Charges do not only produce electric fields. As charges 
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move, they generate magnetic fields (Ampère's law, see table 3.1) and if the magnetic field 
changes, it generates electric fields. This "secondary" electric field can be computed using 
Faraday's law of induction (See table 3.1). This means that a magnetic field changing in time 
produces a curled electric field, possibly also changing in time. The situation is no longer 
electrostatics, but rather electrodynamics. 

In order to analyze the electromagnetic fields, there are two general approaches [34]:  

 a) High-frequency electromagnetic analysis: This type of analysis calculates the 
propagation properties of electromagnetic fields and waves in a given structure. High-
frequency electromagnetic field analysis simulates the electromagnetic phenomena in a 
structure when the wavelength of the signal is of the same order of magnitude or smaller 
than the dimensions of the model. The high-frequency band ranges from hundreds of MHz 
to hundreds of GHz. In this case, the analysis can also classified into two following 
catagories: time-harmonic analysis and  modal high-frequency analysis . 

 b) Low frequency electromagnetic analysis as a result of an electric current, a permanent 
magnet, or an applied external field. For low-frequency problems, or one can say quasi-

static problems, the displacement current in Maxwell's equations is ignored ( =0). 
Therfore, charge accumulation and capacitance effects are excluded. This approach is valid 
when the working wavelength is much larger than the geometric dimensions of structure or 
the electromagnetic interactions are not obvious in the system. Otherwise, the full set of 
Maxwell's equations must be solved (high frequency analysis). In this category the different 
types of analysis can be followed: static magnetic analysis for analyzing magnetic fields 
caused by direct current (DC) or permanent magnets, harmonic magnetic analysis for 
analyzing magnetic fields caused by low frequency alternating current (AC) or voltage and 
finally transient magnetic analysis which analyze magnetic fields caused by arbitrary electric 
current or external field that varies over time. Some applications of low frequency 
electromagnetic analysis are in transformers, electric motors, magnetic imaging systems etc.

/D t
→

∂ ∂

      
3. 3 Numerical solutions of Maxwell's equations 
 
Maxwell's equations can be formulated as a hyperbolic system of partial differential 

equations. This gives access to powerful mathematical theories for the numerial solutions of 
hyperbolic PDE's. (It should be mentioned that the analytical solution of the Maxwell's 
equations can be applied only for a geometrically simple problem.) Computational 
electromagnetics, computational electrodynamics or electromagnetic modeling refers to the 
process of modeling the interaction of electromagnetic fields with physical objects and the 
environment, numerically. It typically involves using computationally efficient approximations 
to Maxwell's Equations and is used to calculate things such as antenna performance, 
electromagnetic compatibility, radar cross section and electromagnetic wave propagation 
when not in free space. There are several  numerical methods for solving the 
electromagnetic problems such as Finite Element Method (FEM), Finite Integration 
Technique (FIT), etc. More information can be found in [34, 35]. 
  
However, here we only describe the principles of the Finite Element Method (FEM), which 

is the underlying procedure of ANSYS® (the software we used for simulation in this project).  
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   3. 3. 1 Finite Element Method (FEM) 

The FEM is generally used for finding approximate solution of partial differential equations 
(PDE) and also integral equations. The solution approach is based on rendering the PDE 
into an equivalent ordinary differential equation, which is then can be also solved using other 
standard techniques such as finite difference, etc. In solving partial PDE, the primary 
challenge is to create an equation which approximates the equation to be studied, but which 
is numerically stable, meaning that errors in the output data and intermediate calculations do 
not accumulate and cause the resulting output to be meaningless. The finite element 
method is a good choice for solving PDE over complex domains or when the desired 
precision varies over the entire domain. FEM is a mathematical method for solving PDE via 
a piecewise polynomial interpolation scheme. Put simply, FEM evaluates a differential 
equation curve by using a number of polynomial curves. Each polynomial in the solution can 
be represented by a number of points and so FEM evaluates the solution at the points only. 
A linear polynomial requires 2 points, while a quadratic requires 3. The points are known as 
node points or nodes.   

To understand how FEM reduced the PDE to ordinary differential equation, let's start with a 

one dimensional case which all parameters in Maxwell's equations (Table 3.1) such as, , H
→

B
→

, etc are the function of x and time (t).  Substituting equation (3.1) into Faraday's law 
and 

E
→

Ampère's law, both in differential form (table 3.1), gives the determinate form of 
Maxwell's partial differential equations: 

                                  .H curl E
t

μ ∂
− =

∂
     or        H Eμ− = ∇×    (3.2) 

and                 .E E curl H
t

ε κ∂
+ =

∂
  or                E E Hε κ+ = ∇×   (3.3) 

 These assume thatε  and μ vary with time slowly, if at all, in comparison to the fields 
themselves. For nonmagnetic materials permeability μ is essentially equal to its vacuum 
value, μ0, everywhere. 

H may be eliminated between the two curl equations in (3.2) and (3.3) and treated as a 
secondary or derived quantity. Taking the time derivative of equation (3.3), the curl of the 
(3.2), and eliminating the term with H gives the second order partial differential equation: 

                                                 1E Eε κ
μ

E+ = ∇×∇×     (3.4) 

where the constant magnetic permeability is brought outside the curl operator. It should be 
noted for completeness that the vector fields in Faraday's and Ampère's law are ultimately 
caused by some distribution of electric charge, ρ, and current, J. This has been already 
shown from divergence conditions of Maxwell's equations (table 3.1):  

.D ρ∇ =        and       . 0B∇ =                                            
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(These equations also can be derived from the principle of charge conservation.) The finite 
element formulation of initial-boundary value problems governed by time-dependent partial 
differential equations (PDEs), Maxwell's equations in particular, consists of the following 
formal steps: 

1. Partition the problem's interior domain into a number of logically regular, contiguous 
sub-domains, i.e., the "model";  

2. Represent the field over each sub-domain by a simplified basis function that 
interpolates between discrete field points or nodes;  

3. Convert the point-wise partial differential operator to an equivalent but "weaker" 
scalar integral operator admitting lower order derivatives;  

4. Evaluate the integral operator for the simplified field basis, giving an algebraic 
system of equations on the nodal field vector and its time derivatives;  

5. Apply a radiation condition on the interior domain's boundary in order to simulate 
scattering into the infinite exterior domain.  

6. Solve the system of ordinary differential equations (ODEs) in time using finite 
differences, modal analysis, etc.  

The finite element part, from steps 1 to 4, yields an approximate integration of the PDE's 
spatial differential operator. Formal reduction of the point-wise partial differential equation to 
a finite element form may be accomplished in at least two ways, the method of weighted 
residuals (Galerkin's method) and a variation principle. They are fundamentally equivalent 
for symmetric differential operators provided that consistent assumptions are made, 
although the method of weighted residuals is more general.  

  The most difficult part of the finite element formulation of propagation-type problems is 
deriving an effective radiation or absorbing boundary condition. This is an approximate 
condition on the exterior boundary of the finite element model that discriminates between 
incident (illumination) and scattered radiation and selectively absorbs the scattered part, 
mimicking radiation into an infinite, nonreflecting exterior domain. An effective condition that 
is sufficient for simultaneous plane wave illumination and scattering is described in [41]. 

  To apply the conventional finite element formalism to Maxwell's equations, it is convenient 
to start with the second order PDE on electric field, equation (3.4), rather than the original 
system of first order equations, (3.2) and (3.3). Strict solutions of this equation must possess 
at least second derivatives, however, it is impractical to require such from numerical 
approximations. A better approach is to rewrite the equation in an integral form admitting 
lower order derivatives. This is the so-called weak formulation. 

To derive the weak form of equation (3.4) it is necessary to define another field over the 
wave domain, the so-called test function, G(x,t). This is a completely arbitrary function within 
wave domain Ω. Taking the inner (dot) product of (3.4) with G and integrating over Ω gives 

                                        
1.( ) .G E E d G Edε κ
μΩ Ω

+ Ω = − ∇×∇× Ω∫ ∫    (3.5) 

Multiplication by a test function and integration reduces the point-wise vector equation to a 
volumetric scalar equation, named the weak form. It is easy to prove the assertion that if this 
integral equation is satisfied for any G then the PDE is necessarily satisfied at all points in 
the domain. The converse is certainly true, but if the PDE is not satisfied in some sub-
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domain then a test function can be chosen that makes the integral nonzero, hence the 
assertion is true. 

Consider the right-hand integrand in (3.5), after factoring μ. From the vector identity, 
.( ) .( ) .( )A B B A A B∇ × = ∇× − ∇× , this integrand can be written as 

                               (3.6) . .G E E G G E∇×∇× =∇× ∇× −∇ ×∇×

Integrating and applying the divergence theorem to the second term gives 

                        (3.7) . . . . . .G E d E G d G n E d
Ω Ω Σ

∇×∇× Ω = ∇× ∇× Ω+ ×∇× Σ∫ ∫ ∫

In the surface integral, n is the outward unit normal to Σ and the integrand has been 
rearranged according to the rule for scalar triple products. This identity is the vector analog 
of Green's identity and is simply the result of multi-dimensional integration by parts. 
Substituting (3.7) into (3.5), the volume-averaged scalar equation becomes 

        
1 1.( ) . . . .G E E d E G d G n E dε κ
μ μΩ Ω Σ

+ Ω = − ∇× ∇× Ω− ×∇×∫ ∫ ∫ Σ

)

  (3.8) 

The critical result expressed in (3.8) is that the volume integral of the second order spatial 
operator has been replaced by "weaker" volume and surface integrals of first order 
operators. 

   Next step is the reduction to ordinary differential equation (ODE). The basis for 
transforming the volumetric partial differential equation to an ordinary differential equation is 
an assumption on the mathematical form of wave fields in domain Ω. In particular, fields are 
assumed to be separable in space and time, namely, 

                                       E(x,t)=S(x).f(t),     G(x,t)=S(x).g(t)   (3.9) 

Where x is the position vector, matrix S(x) represents the field's spatial variation, and vector 
f(t) or g(t) represents the time variation. Note, that the same spatial variation is assumed for 
E and G in (3.9). This assumption, associated with the name of Galerkin in the finite element 
literature, is particularly convenient because it yields a symmetric system of equations. 
Substituting separable solutions (3.9) into the integrands in (3.8) finally leads to an ordinary 
differential equation. 

                                                (M C K Bξ ξ+ = + ξ     (3.10) 

This is the global ordinary differential equation equivalent to Maxwell's partial differential 
equations in Ω. Of course, the utility of (3.10) depends on the choice of separable field 
representation, i.e., S(x) and f(t). Where  

                 .TM S S dε
Ω

= Ω∫   ,   .TC S S dκ
Ω

= Ω∫   , 
1 ( ) ( ).TK S S
μ Ω

d= ∇× ∇× Ω∫  
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are symmetric coefficient matrices defined by the volume integrals and 

                                                 1 .TB S n S d
μ Σ

= ×∇× Σ∫   

More information can be found in [39, 41].  Given the above mathematical preamble, the 
finite element procedure consists of partitioning or discretizing interior domain Ω into a 
number of sub-domains or finite elements. The field is approximated over each element by 
an interpolating or shape function depending on values at discrete nodes on or in the 
element. This yields a convenient local basis (in contrast to a global basis) for evaluating the 
model's matrix coefficients in equation (3.10) using an element-by-element summation.  

  3.3.2 ANSYS® 
 
  ANSYS® is the original (and commonly used) name for a Multiphysics, general-purpose 
finite element analysis software. ANSYS® Multiphysics are self contained analysis tools 
incorporating pre-processing (geometry creation, meshing), solver and post processing 
modules in a unified graphical user interface. Figure 3.1 shows the flowchart for finite 
element analysis using this software. ANSYS® is a general purpose finite element modeling 
package for numerically solving a wide variety of problems. These problems include: static 
and dynamic structural analysis (both linear and non-linear), heat transfer and fluid 
problems, as well as acoustic and electro-magnetic problems. The ANSYS Multiphysics 
software is a general-purpose analysis tool allowing a user to combine the effects of two or 
more different yet interrelated physics, within one unified simulation environment.  
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Figure 3. 1 Flowchart for FEM analysis using ANSYS®  
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4 Modeling and simulation 
 
  Now, we come to the coil simulation using Finite Element Method with the simulation tool 
ANSYS. As shown in figure 3.1, the task sequence in an ANSYS simulation has some main 
parts which are essentially the same no matter how your simulation project looks like: 

1. Geometry modeling 
2. Setting up material properties ( such as permeability, …..) 
3. Meshing 

• Selecting finite elements that suit the needs (from a predefined library) 
• Defining the element density (May change significantly in regions, some 

regions high some regions probably low) 
 

4. Application of loads and degrees of freedom. Deciding what forces act on which 
nodes and what boundary conditions have to be fullfiled. 

5. Numerical solving: This gives us the solution for every nodes or elements (discrete!) 
6. Postprocessing: Visualization of element solution and data export.  

In this chapter, we try to follow this guidelines and demostrate the results of microcoil 
simulation for a given geometry. 
 
4.1 The coil geometry and the matrerial properties 
 
A new microcoil for micro-MRI cell imaging has been recently designed (at IMTEK, 

Freiburg) and fabricated (in Japan) by Mona Klein [14] (See Figure 4.1). Simulation 
geometries in ANSYS was created based on the Mona Klein's fabricated coil geometry. 
Figure 4.2 shows the sketch of simulation microcoil geometry with 8 turns, which was 
created for the ANSYS simulation.  Parameters S1, S2, S3, S4 are the turn's inner radios. P1, 
P2, P3 and P4 are the turn's spacing. R1, R2, R3, R4 stand for  length of the coil's cross 
sections and H1, H2, H3 and H4 are the width of the coil cross sections.  In simulation, the 
following dimensions were considered for the parameters: 
 

P1 =20 μm, P2 =40 μm, P3 =40 μm, P4 =40 μm 
S1 =80 μm, S2 =80 μm, S3 =80 μm, S4 =80 μm 
R1 =20 μm, R2 =20 μm, R3 =20 μm, R4 =20 μm 
H1 =20 μm, H2 =20 μm, H3 =20 μm, H4 =20 μm 

 

   
Figure 4.1 Fabricated Coil pattern [14] 

 
It is comon practice in FEM simulation to look for any kind of symmetry which could be 

used to subdivide the simulation domain without any loss of accuracy.    
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Since, the coil  is symmetric in both x and y axis (see figure 4.2), the overall shape can be 
reduced to one quarter, in simulation. This approach save simulation time and also the 
memory. Therefore, The following 2-dimensional axis-symmetrical model was created 
(Figure 4.2).   
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Figure 4.2 Sketch of Simulation microcoil geometry  

 
The coil, as a conductor, was considered to be made from Copper with relative 

permeability ( μr =1) and resistivity, ρ, equal to 16.78 nΩ.m. The linear material properties 
will be an acceptable approach if the temperature considered to be almost constant (in the 
range of room temperature). The medium around the coductor was cosidered as air with μr 
equal to 1. 
 

4.2 Meshing and element types  
 
  The ANSYS program has a large library of element types. PLANE53 models 2-D (planar 
and axis-symmetric) magnetic fields. This element is defined by 8 nodes and has up to 4 
degrees of freedom per node: z component of the magnetic vector potential (AZ), time-
integrated electric scalar potential (VOLT), electric current (CURR), and electromotive force 
(EMF). PLANE53 is based on the magnetic vector potential formulation and is applicable to 
the low-frequency magnetic field analysis such as eddy currents (AC time harmonic and 
transient analyses), voltage forced magnetic fields (static, AC time harmonic and transient 
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analysis) etc [38]. PLANE53 element type was chosen for the conductor and its surrounding 
air medium, in this project.   
  Because it is not possible to discretize an infinite space, we must think about, hoe to deal 

ded 
f

be used to model symmetries: if the geometry shows 
s

with the boundaries of our calculation domain. The behavior of the interesting field has to be 
treated as if it could penetrate the space outside the calculation domain without recognizing 
the boundary plane. This is called "open boundary" and can be handled by the solvers. 
In ANSYS, INFIN110 element type is used to model an open boundary of a 2-D unboun
ield problem. A single layer of elements is used to represent an exterior sub-domain of 

semi-infinite extent. This element has 2-D (planar and axis-symmetric) magnetic potential 
capability. The element is defined by either 4 or 8 nodes with a single degree of freedom (in 
our case AZ) at each node [38]. In this project, INFIN110 was chosen for far field in order to 
model an open boundary condition.  
 The boundary conditions can also 
ymmetry to a certain plane or axis, the fields will either be tangential or normal to this 

particular plane or axis. In this case, it is enough to discretize only one half of the geometry 
and the boundary condition at this plane or axis can be used to force the fields to behave 
like the whole geometry. As an example, In order to fulfill this fact in our model, magnetic 
vector potential (AZ) equal to zero was applied (at X=0). 
  .   
 

 
 

Figure 4.3 shows the meshing of different areas of the geometry 
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Sometimes it is normal to make non-uniform meshing in whole computational domain. 
Since some domains probably are regions of interest (ROI), fine meshing in ROI would be   
necessary. Therefore, Fine meshing in and also around the conductor were applied in order 
to visualize skin and proximity effect inside the coil and also to minimize the discretization 
error within the coil. Figure 4.3 shows the area-meshed FE model. 
 

   4.3 The load 
  
  After having defined the simulation geometry along with the material properties and having 
defined the finite element mesh along with the boundary conditions, we have to define the 
loads. 
 An alternative current (υ= 300 MHz) was applied in a solid conductor (total current = 1e-12). 
Furthermore, a coupled time-integrated electric scalar potential (VOLT) were applied into 
each set of coil turns. Coupling degrees of freedom into a set causes the results calculated 
for one member of the set to be the same for all members of the set. 
 
4. 4 Solving 
 
It has been already discussed in section 3.2 that low frequency analysis is valid when the 

working wavelength is much larger than the geometric dimensions of structure. Since, for an 
MR experiment conducted at 7 T, υ= 300 MHz, the corresponding wavelength is 1 m and 
our coil size is in the micrometer range, so one can easily say that the low frequency 
analysis can be applied for microcoil simulation. But it should be noted that for low-
frequency problems, or quasi-static problems, the displacement current in Maxwell's          

equations is ignored ( =0). Therfore, charge accumulation and capacitance effects 
are not included. In this category harmonic magnetic analysis is applied for analyzing 
magnetic fields caused by alternating current (AC) or voltage. For a 2-D harmonic problem, 
solution is found by solving the Maxwell equation through the magnetic vector potential 
formalism. 

/D t
→

∂ ∂

 
(In harmonic analyses, the excitation and DOF response are assumed to be sinusoidal at a 

given constant frequency f=Ω/2π although each location may have different displacement 
amplitude uo and phase angle φ. Using complex notation, the displacements can be 
expanded as follows:       
                                   ( )

0 0 1 2( )i t i i t i tu u e u e e u iu eϕ ϕΩ + Ω= = = + Ω    (4.1) 
 Substitution of the above into the linear equations of motion yields the following: 

M u C u Ku F+ + =                                                                                   
Where M, C and K are system matrices, u is the degree of freedom and F is load [42]).  
 

 So, ANSYS harmonic response analysis was performed and sparse direct solver was 
chosen. The sparse direct solver is based on a direct elimination of equations as opposed to 
iterative solvers, where the solution is obtained through indirect means (that is, through 
iterative solution). Since the sparse direct solver is based on direct elimination, poorly 
conditioned matrices do not pose any difficulty in producing a solution.  This method is 
recommended when robustness and solution speed are required (nonlinear analysis); for 
linear analysis where iterative solvers are slow to converge (especially for ill-conditioned 
matrices, such as poorly shaped elements).  
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4.5 Post processing 
 
 After building the model and obtaining the solution, we want to answer this question: How 

does the magnetic field flow within the coil's turns? To answer, we should perform post 
processing. Post processing means reviewing the results of an analysis. It is probably the 
most important step in the analysis, because one is trying to understand how the applied 
loads affect the design, how good the finite element mesh is, and so on. In ANSYS, two 
postprocessors are available to review the results: POST1, the general postprocessor, and 
POST26, the time-history postprocessor. Via the post processor of ANSYS, it is possible to 
plot or visualize the results. Figure 4.4 shows the current density distribution in the 
conductors (coil's turns) at 300 MHz. As figure shows, the current has been accumulated on 
the external surface of the conductor (skin effect) and also the distribution of current within 
the conductor is asymmetric (proximity effect).  
 

  

 
 

Figure 4.4 the current density distribution in the conductors (coil's turns with dimentions width=20 μm 
and length= 60 μm)  

 
 

As already mentioned, our goal is to define the magnetic field distribution. Furthermore, in 
this project, we focus on magnetic field homogeneity within the coil. But, the question arises: 
which parameter can be considered as criteria for the field homogeneity? 
To answer this question, now we try to derive and introduce an objective function as a field 

homogeneity criterion.  
We know from statistics that standard deviation, σ, is the most common measure of 

statistical dispersion, measuring how spread out the values in a data set. If the data points 
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are all close to the mean, then the standard deviation is close to zero. If many data points 
are far from the mean, then the σ is far from zero and finally if all the data values are equal, 
then the standard deviation is zero. The standard deviation is the root mean square (RMS) 
deviation of the values from their arithmetic mean. Thus, we consider the following value as 
an objective function for measuring field homogeneity within the coil: 

                                         100obj
H
σ

= ×      (4. 2) 

which σ is the standard deviation of the magnetic field and H is the magnetic field mean 
value within the coil. This function shows that, in our ROI, how the fields are spread out 
around the field mean value in percent.   
First of all, we should define our region of interest to measure the field and its dispersion. 

The aim of this project is to design a receiver coil for MR-cell imaging. The cell is located 
inside the tube which is surrounded by the coil turns in order to increase filling factor. Figure 
4.5 depicts the place where the cell should be located in. One can consider this area as 
80 % of the whole area inside the coil.  We call this area as our ROI.  
Therefore, in post processing we should be able to collect the field distribution data in the 

ROI. Then, we should add the commands to ANSYA program how to calculate the field- 
mean value and the standard deviation and finally return the objective function (equation 
4.2) in this area. In next section, we derive a formula for calculation of σ and H . 
   

 

Region of 
Interest 
(ROI) 

Coils

 
Figure 4.5 depicts the our region of interest within the coil   

 

Figure 4.6 and 4.7 show the magnetic field in our ROI. Since the magnetic field, which is 
calculated by harmonic analysis, is a complex value, we try to figure out the real part (figure 
4.6) and the imaginary part (figure 4.7) in our ROI separately. In comparison, the 
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magnitudes of real part are 2 orders of magnitude higher than the imaginary part. 
Furthermore, the imaginary response contains much higher magnetic field inhomogeneity, 
or one can say dispersion, in comparison to real response. Even, some imaginary values 
are negative and thus the vectors have negative directions, too (figure 4.7). This means that 
a big phase shift can be observable in ROI.  

  Finally, we try to depict the amplitude of magnetic field (calculated by the square root of the 
sum of the squared values of both real and imaginary part) in figure 4.8. The magnetic field 
intensity distribution with different colors shows dispersion from maximum value (1.6x 10-8 

A/m) to minimum value (9.0x10-9 A/m).      
 
 

 
Figure 4.6  Magnetic field distribution in ROI (real part)  
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4.5.1 Calculation of magnetic field mean value 

ince the size of the elements inside the ROI are not constant and their values vary in 
r

 
S
espect to different mesh size in different locations, the magnetic field intensity should be 

normalized over the element sizes. Thus, the magnetic field mean value can be calculated 
as: 

                                         i i
i

i
i

H A

A
H

∗
=
∑
∑

     (4.3) 

 
Where Hi is the magnetic field in element i. Ai is the area of element i and symbol Σ shows 

 

the summation over all the elements. 
 

 
Figure 4.7 Magnetic field distribution in ROI (imaginary part) 
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4.5.2 Calculation of magnetic field standard deviation in ROI 

The variance of magnetic field can be defined as:  
 

                    

 
  

{ }2 2 2

2
( ) 2i i i i i i i i i i

i i

i i
i i

H H A H A H H A H A

A A
σ

− ∗ − ∗ ∗ +
= =
∑ ∑

∑ ∑
 

∗
(4.4) 

by rearranging the equation 4.4 and subsituation of equation 4.3 in 4.4, one can easily 

 

                           

derive the following equaition:  

2 2

2
i i i i

i i

i
i

H A H A

A
σ

∗ −
=
∑ ∑

∑
    (4.5) 

and finally standard devaition is the root of variance: 

                                          

 
2 2

i i i i
i i

i
i

H A H A

A

∗ −
=σ
∑ ∑

∑
    (4.6) 

 

 
Figure 4.8 Magnetic field distribution in ROI (Amplitude) 
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4.5.3 Objective 

 e consider following value as an objective function for measuring field homogeneity 
w

function in ROI 
 
 W
ithin the coil (as already discussed in section 4.5): 

                                         100
H
σ

= ×obj                                           

which σ is the standard deviation of the magnetic field and H is the magnetic field mean 

             
  Imaginary part         Real part Amplitude 

value within the coil. Now is the time to calculate the objective function in our region of 
interest. This value is a criterion for field homogeneity in this region. Table 4.1 shows the 
final results: 
                   

(%) (%) (%) 
Obj. function 304.8 9.6 9.6 

 
Table 4.1 the final results for a field homogeneity criterion 

  Since imaginary part of magnetic field response is 2-3 order of magnitude smaller than the 

For shape optimization we can change the dimentions of all the parameters in coil, for 
i

 igure 4.8 a) to e) depicts the standard shape and the possible shape optimization 

In the next chapter we introduce optimization theory and try to implement this theory to 

 

real one (already discussed), the objective function for amplitude returns the same value of 
the real part. The final result shows that this geometry probably is not the optimum design 
and we should try to decrease inhomogeneity by means of shape optimization. 
 

nstanse, coil spacing (P1 to P4), inner radios of coil turns (S1 to S4), coil width (H1 to H4) and 
finally the coil length (R1 to R4). See figure 4.2. 
 
 F

approaches to optimize the coil design, in respect to field uniformity within the coil. 
 
  
design an optimum-shaped microcoil.  
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a) Standard design 

 
 

          
b) Different spacing between turns of the coil  from high to low (left) or low to high (right) 

 
 

           
c) Different coil inner radios form high to low (left) or low to high (right) 

 
 
 

        
 

d) Different coil turns length form low to high (left) or high to low (right) 
 
 

            
   

e) Different coil turns width form high to low (left) or low to high (right) 
 

Figure 4.8 a) to e) The standard shape and the possible redesigned shape of microcoil in order to 
overcome field inhomogeneity (green: conductor, yellow: ROI for magnetic field studies) 
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5  Optimization 
The concept of optimization is basic to what we do in our daily life: a desire to do better or 

be the best in one field or another. In engineering we wish to produce the best possible 
result with the available resources. In a highly competitive modern world it is no longer 
sufficient to design a system whose performance of the required task is just satisfactory. It is 
essential to design the best system. Thus in “designing” new products in any field: 
aerospace, automotive, chemical, electrical, biomedical, agricultural, etc, we must use 
design tools which provide the desired results in a timely and economical fashion. Numerical 
optimization is one of the tools at our disposal. In general, there are two fundamentally 
different types of optimization. The first is referred to as design optimization. The second is 
known as topological optimization. The goal of topological optimization is to find the best use 
of material for a body such that an objective criterion takes out a maximum (or minimum) 
value subject to given constraints [38]. In this chapter, we introduce the optimization theory 
and then try to implement this theory to optimize the microcoil geometry using the DOT 
software. 

 5.1 Basic concepts of optimization  

  Most of the design task in engineering is quantifiable, and so we are able to use computers 
to analyze alternative designs efficiently. The purpose of numerical optimization is to aid us 
in rationally searching among alternative designs for the best design to meet our needs. 

  The alternative designs of the same system differ from each other because some 
parameters of the system are not the same. The parameters that could be changed in the 
system while searching for the best design are called design variables. Although we may not 
always think of it this way, design process may be defined as the process of finding the 
minimum or maximum of some characteristic, which may be called the objective function. 
For the design to be acceptable it must also satisfy certain requirements. These 
requirements are called design constraints. Optimization automatically changes the design 
variables to help us find the minimum or maximum of the objective function, while satisfying 
all the required design constraints. 

In the most general sense, numerical optimization solves the nonlinear, constrained 
problem; find the set of design variables, Xi, i=1, N, contained in vector X, that will 

                                           Minimize (or Maximize) F(X)    (5.1) 

Subject to: 

                                              gj (X) ≤0               j = 1, M   (5.2) 

                                              hk (X) = 0            k = 1, L    (5.3) 

                                              Xi
L ≤ Xi ≤ Xi

U       i= 1, N    (5.4) 

  Equation 5.1 defines the objective function which depends on the values of the design 
variables, X. Equations 5.2 and 5.3 are inequality and equality constraints respectively, and 
equation 5.4 defines the region of search for the minimum. The bounds defined by equation 
5.4 are referred to as side constraints [44]. In general, there are two kinds of optimization 
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problems, unconstrained and constrained. The above equations show a constrained 
problem with the set of constrained 5.2 and 5.3. Here a problem is defined as unconstrained 
if the set of constraints does not exist. In this case, lower and upper bounds (equation 5.4) 
can be imposed on the design variables, and these bounds will be respected. To understand 
how the optimization theory works out, let us start with a simple physical problem.   

 

Figure 5.1 A simple physical problem [43] 

  Consider the example in figure 5.1. One boy bets that he can locate the top of the hill while 
blindfolded. The other boy agrees but asks the first boy to also stay inside the fences. 
Translating this situation into optimization problem formulation, we see that the objective is 
to find the highest point on the hill. Therefore, objective function is the height achieved by 
the first boy with respect to his original position. The design variables are longitude and 
latitude – the coordinates, defining position of the boy. The constraints are that the boy has 
to stay inside the fences. Note here, that in general, the boy may start the search from 
outside the fences. It is possible to define this physical problem mathematically, thus 
converting it to the engineering problem. Optimization is a very simple extension of the 
engineering problem:

Maximize:    1 2( , )Y f x x=  (objective) 

Subject to: 1 1 1 2

2 2 1 2

( , ) 0
( , ) 0

F f x x
F f x x
= ≤
= ≤

 (constraints) 

 1

2

x
x

x
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 (design variables) 

 Recall, that optimization automatically changes the design variables to helps us find the 
minimum or maximum of the objective function, while satisfying all the required constraints. 
The optimization process is illustrated in Figure 5.2.  
 
  Since the boy is blindfolded so he can’t see the highest point on the hill that is inside the 
fences. He must somehow search for this point. One approach would be to take a small step 
in the north-south direction and another in the east-west direction and from that estimate the 
slope of the hill (assuming he is well inside of the fences). What he has done is to calculate 
the gradient of the objective function. This is a vector direction. The slope is the direction he 
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might chose to search since this will move he up the hill at the fastest rate. This we call the 
search direction. 
 
 

 
Figure 5.2 The optimization process [43 ]    

 
 
Note that the number of steps he takes in this direction is a scalar parameter. We will call 
the number of steps in a given search direction α. Now we define the point at which he 
started as X. In this case, X contains two entries, being the longitude and latitude of his 
starting point. Suppose that he choose to move straight up hill. He moved in a vector search 
direction we will call S (See figure 5.2). Also, this is the first iteration in the process of 
maximizing his elevation so it is iteration no. 1. Since this is the first iteration, the direction 
he moves is designated as S1. Upon encountering a fence or the crest of the hill in direction 
S1, we can update the description of his location on the hill by the simple mathematical 
expression: 
 
                                                1 1q q qX X Sα− −= +      (5.5) 
 Which, q is the iteration number. If he is not at the crest of the hill, he could just repeat the 
process of finding a new direction and moving again.  
 So, the process may be broken down into the following steps: 
• Find a search direction that will improve the objective while staying inside the fences; 
• Search in this direction until no more improvement can be made by going in this direction; 
• Repeat the process, until no search direction can be found that improves the objective. 
 
The optimization problem formulation and the optimization process presented above are 
very general and can be applied to any design problem. 

No doubt that optimization is useful. It has been successfully working for many years. 
Optimization is the most powerful design improvement tool that is available today. 

The overall optimization process now proceeds in the following steps: 

1. Start q=0, X=X0 
2. q= q+1 
3. Evaluate F(Xq-1) 
4. Calculate gradient of F(Xq-1) 
5. Determine a search direction, Sq 
6. Perform a one-dimensional search to find α 
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7. Set equation 5.5 
8. Check for convergence to the optimum. If satisfied, exit. Otherwise go to step 2. 

  The critical parts of optimization task is to find a usable search direction Sq, choose the 
scalar parameter α that will minimize  and finally test for convergence to the 
optimum. 

1( qF X Sα− + )q

5.2 Design Optimization Tools (DOT) 

  DOT is a general purpose numerical optimization software package which can be used to 
solve a wide variety of nonlinear optimization problems. The user provides a main program 
for calling DOT, and an analysis program to evaluate the necessary functions. DOT is linked 
with the user's codes to create the design optimization program. DOT will change the input 
parameters to the analysis in order to minimize or maximize the user defined objective, 
subject to constraints (limits) on other user defined responses. To achieve this, DOT calls 
the analysis program repeatedly while searching for the optimum [45]. Figure 5.3 shows the 
flowchart of optimization process coupled to ANSYS. In loop, ANSYS is called to rebuild the FE 
model with changed design variables). 

 
 

No 

Yes 

Start 

Stop 

Change design 
variables 

Convergence 
criterion fulfilled? 

Evaluate the 
objective function 

Build a parameterized FE Model 
for given design variables 

Solve the model 
(simulation) 

ANSYS 

Figure 5.3 Flowchart of optimization process coupled to ANSYS 
 
DOT is written in FORTRAN 77. 
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5.2.1 Finding the Search Direction 
 
  The first step in finding the search direction is to calculate the gradient of the objective 
function, F(X). This may be provided by the user or (by default) will be calculated by DOT 
using finite difference methods. On the first iteration, we use the steepest descent direction. 
Therefore, the search direction is simply 
                                                                 1(qS F X )q −= −∇      (5.6) 
If we always use the negative gradient of the objective function for our search direction, it 
would be what is called the steepest descent method. In the steepest descent method, the 
search direction is always perpendicular to the previous direction. However, this method is 
notoriously inefficient and should never be used as a general algorithm. 
We only use the steepest descent direction if this is the beginning of the optimization (q=1), 
or of the optimization progress indicates that our search direction is poor due to nonlinearity 
or numerical reasons. On subsequent iterations, we will use the Broydon-Fletcher-Goldfarb-
Shanno (BFGS) method, to determine the search direction [45]. The BFGS method is called 
also a quasi-Newton method because it creates an approximation to the inverse of the H 
matrix. H is matrix of second derivatives of the objective function. Initially, H is set to the 
identity matrix and the search direction is defined as: . After the first 
iteration, H is updated using the following formula;  

1(qS H F X −= − ∇ )q

                                                 1q q qH H D+ = +      (5.7) 
 where 

                                  2

1 ( )q T q T qD pp H yp p Hσ τ
σ σ
+⎛ ⎞ Ty⎡ ⎤= − +⎜ ⎟ ⎣ ⎦⎝ ⎠

   (5.8) 

                                                           Tp yσ =      (5.9) 
                                                             (5.10) T qy H yτ =
and  
                                                       1q qp X X −= −      (5.11) 
                                               1( ) (qy F X F X )q−= ∇ −∇     (5.12) 
  
  This method is considered to be theoretically best, but requires significant memory to store 
the H matrix (actually just the upper half, since H is symmetric). This method is considered 
to be less sensitive to the accuracy of the one-dimensional search [44]. This method can be 
proven to converge in N or fewer iteration for strictly quadratic functions. Once we have 
chosen the search direction, Sq, we search in this vector direction to find the value of that will 
minimize   . 1( )q qF X Sα− +
  When no improvement can be found, a steepest descent direction will be attempted to see 
if this will improve the objective. If still no improvement can be found, the optimization is 
complete. 
 
5.2.2 Convergence to the Optimum 
   
 Because optimization is an iterative process, stop criteria are the most important things. 
The DOT software uses several criteria to decide when to end the iterative search process, 
and these are described here: 
 

• Maximum Iterations 
                     The default for this is 100 iterations (search directions). Usually, an optimum is               

found much sooner than this, so the maximum is mainly intended to avoid 
excessive computations 
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•   No Feasible Solution 

 If the initial design is infeasible (constraints are violated) our first priority is to 
overcome this and find a feasible solution. However, if there are conflicting 
constraints, this may not be possible. Therefore, if a feasible design has not been 
achieved in 20 iterations, the optimization process is terminated.  

 
• Point of Diminishing Returns 

                    Probably the most common situation is where the optimum is approached 
asymptotically. Therefore, while some progress is still being made, continued 
iterations are not justified. Here, two criteria are used. The first is that the relative 
change in the objective between iterations is less than a specified tolerance, ε. 
Thus, the criteria is satisfied if 

                                                                                
1

1

( ) ( )

( )

q q

q

F X F X

F X
ε

−

−

−
≤    (5.13) 

             The default value for ε is 0.001. 
                The second criterion is that the absolute change in the objective between 

iterations is less than a specified tolerance, ε. This criteria is satisfied if 
                                                                            1( ) ( )q qF X F X ε−− ≤    (5.14)  
             The default value for ε is 0.0001. 
                 The reason for the two criteria is that if the objective function is large, the relative 

change between two successive iterations is an indication of convergence. 
However if F(X) is a very small number, a relative change will not be meaningful 
and so the absolute change will control convergence. 

 
5.3 Implementation of DOT 
 
Figure 5.4 shows a flexible optimization environment coupled to ANSYS process. 

Mathematica software is used as a driver. Its function eval takes the design variables (P, S, 
R and H) as arguments then, calls the external program ANSYS (for rebuilding the FE 
model) and finally evaluate objective function. Objective function value is transferred back to 
DOT optimizer. DOT communicates with Mathematica via Mathlink. More information on 
implementation can be found at http://evgenii.rudnyi.ru/soft/dot/. 
 

DOT 
optimizer 

ANSYS 

Compute objective   
              function 

   Mathlink 

Call DOT 
Mathematica 

Obj. func. 

Call evel 

Min. F(X) 
Gj(X)≤0 ; j=1,M 

Xl≤X≤Xu 

 
Figure 5.4 DOT Implementation 

 
 
 

 51

http://evgenii.rudnyi.ru/soft/dot/


5.4 Optimization Results 
 
  In order to minimize our objective function, the following sets of equations are solved. As 
illustrated in figure 4.2, there are 16 design variables in our model.  The flexible lower and 
upper bounds were set to 2.5Xi and 4.00 Xi respectively. Here, a problem was defined as an 
unconstrained. The lower and upper bounds were imposed on the design variables. 
 

Minimize  100obj
H
σ

= × =F(Xi) =F(P1, P2, P3, P4,S1,S2,S3,S4,R1,R2,R3,R4,H1,H2,H3,H4)  

Where                                     i =1, 2, 3, ……..,, 16 
 
And the bounds                     0.25 Xi ≤ Xi ≤ 4.00 Xi
 
  Since, the initial guess is a very important starting point for an iteration process. First, we 
tried to carry out optimization process step by step, in order to find the best initial guess. 
BFGS method was selected for optimization.   
 
5.4.1 Optimization of turns spacing (P) 
 
P1 to P4, which stand for coil turns spacing or pitches (See figure 4.2), were considered as 

our design variables. Other parameters were considered as constant values equal to the 
values previously shown at the top of figure 4.1. Table 5.1 shows the initial values and the 
results of optimized pitches after running optimization process. In this step, the objective 
function (field inhomogeneity) decreases to 6.82% which is almost 30% improvement in 
comparison to the initial objective function which we have got for standard design in table 
4.1 (9.6%). 
 
In chapter 2, we tried to derive a simple formula for calculation of magnetic field at the 

center and at the end of a solenoidal coil by Biot-Savart law. After some assumptions, 
finally, equations 2.5 and 2.7 were derived and comparison showed that the magnetic field 
at the ends of a solenoid is one half that at the center. 
 To compensate this effect, one should apply the classical trick of so-called “end 
compensated” RF coils in which the outermost windings should be squeezed to a slightly 
smaller pitch. The optimization result shows that the outer winding should be closer, in the 
other word, the P4 is smaller than P2 and P3. These results support the idea of end 
compensating. Furthermore, P2 and P3 have almost similar values (around 26 μm) and the 
pitch of innermost winding (=2 P1) is equal to 29 μm, which is a little bit bigger than P2 and 
P3. These also refer to end compensating and thus are quite acceptable results.   
 

   
 

P1(μm) P2(μm) 
 

P3(μm) 
 

P4(μm) 
Objective 
Function 

(%) 
Initial values        

  
20  30  40  50  14.20 

Optimized  
 

14.57  26.11 26.79 12.5 6.82 

 
Table 5.1 The initial, optimized values of spacing (P) and objective function before and after 
optimization (as an example the initial values of P1 to P4 were set to 20, 30, 40 and 50 μm 

respectively) 
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5.4.2 Optimization of coil's cross section length (R) 
 
  In this part, the optimized values of P1 to P4 from table 5.1 were considered and R1 to R4 
defined as design variables. The optimization process was carried out to optimize the 
thickness of the coil (the coil's cross section length in figure 4.2). Table 5.2 shows the results 
of optimization. It seems that the thickness of the coil has no big influence in field 
homogeneity within the coil. As an example, the initial values equal to 20 has been shown in 
following table. For other initial values, the optimization program returned almost the same 
values too and initial and final objective functions were almost equal and have no big 
difference.     
 
 

 
R1(μm) R2(μm) 

 
R3(μm) 

 
R4(μm) 

Objective 
Function 

(%) 
Initial values        

  
20  20  20 20 6.82 

Optimized  
 

20.58  21.15 17.00 18.36 6.72 

 
Table 5.2 The initial, optimized values of length (R) and objective function before and after 

optimization (for S1 =80, S2 =80, S3 =80, S4 =80 μm and  H1 =20, H2 =20, H3 =20, H4 =20 μm) 
 

 
5.4.3 Optimization of coil's cross section width (H)  
 
  For the third step, width of the coil turns was optimized. By keeping the previous optimized 
values defined in section 5.4.1 and 5.4.2, and considering H1 to H4 as our design variables, 
the following results were obtained (See table 5.3). The results showed that in order to 
minimize the field dispersion, the dimensions of coil windings should not be the same. The 
outer windings should be kept thinner and the inner one thicker in respect to dimensions. 
These refer to make higher current density in outermost to compensate the decreasing field 
along the coil.  
 

 
H1(μm) H2(μm) 

 
H3(μm) 

 
H4(μm) 

Objective 
Function 

(%) 
Initial values        

  
20  20  20  20 6.72 

Optimized  
 

15.51  13.18 5.64 5.00 4.91 

 
 

Table 5.3 The initial, optimized values of width (H) and objective function before and after 
optimization (for S1 =80, S2 =80, S3 =80, S4 =80 μm) 

 
5.4.4 Optimization of coils inner radios (S) 
  
For optimization of coil diameter, the next step was started with the considering the 
previously obtained optimized values for P, R and H.  
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  In this step, S1 to S4 were the design variables with the initial values of 80 μm. Table 5.4 
shows the results of optimization process. Based on the optimized results, the radios of 
inner windings are the same and 73 μm was the optimized value, approximately. The outer 
windings should have different diameters, in order to minimize field non-uniformity far from 
the center. The last windings should be closer to the sample (considering that sample was 
placed within the coil) and the windings which are close to the end (S3 in our model) should 
be pulled to a slightly bigger radios. These refer to balancing the slightly big field changes at 
the area close to the coil ends. The final objective function (4.21%) was 56% lower than the 
initial objective function which we have got for standard design in table 4.1 (9.6%) and 
resulted in more homogenous magnetic field.     
   
 

 
S1(μm) S2(μm) 

 
S3(μm) 

 
S4(μm) 

Objective 
Function 

(%) 
Initial values        

  
80 80  80  80  4.91 

Optimized  
 

73.58  73.39 77.90 58.12 4.21 

 
Table 5.4 The initial, optimized values of radios (S) and objective function before and after 

optimization 
 
5.4.5 Optimization of all the parameters 
 
In the previous sections, the optimization processes were carried out through restriction of 

design variables to 4 (instead of 16) in each step. This approach led to better understanding 
of the influence of each design values on the field uniformity, separately and also to find the 
best initial guess's domain. By better understanding of initial guesses, one can reduce the 
number of iterations and function calls and consequently faster convergence to the solution.  
     

 So, the optimization procedure is implemented for the whole design variables (including all 
the 16 parameters) and the results are shown in table 5.5. These results were obtained after 
63 function calls which takes 2.5 hours cpu. (around 2.5 minute per iteration). The objective 
function reduced to 4.18%. 
 
5.5 Discussion 
 
  As already discussed in chapter 4, in harmonic analysis the DOF response (such as 
magnetic field) are assumed to be sinusoidal at a given constant frequency and using 
complex notation has amplitude and phase angle. Till now, we try to optimize the shape in
order to homogenize the amplitude of H-field. Since the magnetic field, which is calculated 
by harmonic analysis is a complex value, the question arises that by optimization has the
 imaginary part of the magnetic field's dispersion been minimized, too? The imaginary part 
represents the phase shift and it is quite important to be minimized for MRI-imaging. For 
standard design, we have already mentioned that the objective function in respect to 
imaginary part is 304.8% (refer to table 4.1). This value represents a big dispersion in phase 
shift. To answer this question, we try to implement the optimization process for imaginary 
part separately. The results are shown in table 5.6. 82% Improvement in phase shift 
dispersion (from 304.8% to 55.28%), by optimization, is a quite considerable value.  
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 Initial 
design 
(μm)   

Optimized 
design (μm)  

P1 20 14.57 
P2 40 26.11 
P3 40 26.79 
P4 40 12.50 
S1 80 75.35 
S2 80 76.28 
S3 80 78.89 
S4 80 59.88 
R1 20 19.99 
R2 20 19.99 
R3 20 20.00 
R4 20 20.00 
H1 20 15.51 
H2 20 13.18 
H3 20 5.64 
H4 20 4.99 

Objective 
Function 

9.6% 4.18% 

 
Table 5.5 The initial and optimized design values (real or amplitude) 

 
 

 Initial design
(μm)   

Optimized 
design (μm)  

P1 20 14.58 
P2 40 26.11 
P3 40 26.79 
P4 40 12.50 
S1 80 80.22 
S2 80 79.37 
S3 80 80.75 
S4 80 78.92 
R1 20 19.99 
R2 20 19.99 
R3 20 19.90 
R4 20 19.87 
H1 20 15.51 
H2 20 13.19 
H3 20 5.64 
H4 20 5.00 

Objective 
Function 

304.8% 55.28% 

 
Table 5.6 The initial and optimized design values (imaginary part) 
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 Comparison of optimized design values in both tables show that the only difference are in 
S values and in order to optimize the shape for imaginary response, the diameter of the coil 
should be kept a little bit bigger. As figure 4.7 in previous chapter depicts, the most of field 
dispersions and phase shifts are taken place at the area close to the conductors. It is 
reasonable if one say in order to decrease phase shift effects the windings should be pulled 
slightly far from the sample. If we consider the obtained optimized-dimensions in table 5.6 
and run the simulation program for amplitude or real response of H-field, the program 
returns 4.80% as the objective function. And vise versa if we run the simulation program 
based on the optimized design values of table 5.5 and obtain the imaginary responses it 
returns 172.6% for objective function. Since, there is no big difference between 4.8% and 
4.18% (the optimized value for real part) we consider the dimension of table 5.6 as the 
optimized dimensions. 
 
Therefore, by considering these dimensions for manufacturing the microcoil, we expect 50 

and 82% improvements in real and imaginary field dispersion respectively.  
 
Figure 5.5 shows the magnetic field distribution in ROI (amplitude) after optimization. In 

comparison to figure 4.8, which shows the same but before optimization, one can easily 
recognize that how optimization makes the higher field homogeneity within the coil. These 
two figures depict the amplitudes of H-field in our region of interest.  

 
 

Figure 5.5 Magnetic field distribution in ROI (Amplitude) after optimization 
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Figure 5.6 shows the magnetic field imaginary response distribution of harmonic solution  
in ROI (imaginary) after optimization. As the figure shows, in most of the area there is no 
observable big phase shift. 

 
 

Figure 5.6 Magnetic field distribution in ROI (imaginary) after optimization 
 
Figure 5.7 depicts an optimized-shape coil with a sample's tube inside it, schematically. 

The sizes are exactly the same values which considered as the optimized one in table 5.6. 
 

 
Figure 5.7 Schematic of an optimized-shape coil with a sample's tube inside the coil (sizes are 

shown in table 5.6) 
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6 Model Order Reduction (MOR) 
 
The purpose of Model Order Reduction (MOR) is to replace a large system of equations by 

a smaller one, which preserves the essential properties of the original model. This smaller 
system must be an approximation of the larger system, in a sense that the input-output 
behavior of this system is comparable to the original, within certain accuracy. Therefore, the 
methods try to capture the essential features of the model in a small onel and preferable as 
quick as possible. One could further define extra properties, like stability, that have to be 
preserved in the reduction step [46]. Model order reduction of linear large-scale dynamic 
system is already an established area. Engineers can combine this technique with existing 
commercial finite element software in order to speed up a transient or harmonic analysis. In 
this chapter, we introduce and present the case of MOR for the ANSYS harmonic analysis 
of MRI microcoil and compare the results with respect to computational time and accuracy.  
 

6.1 Principle of model order reduction 
 
 We start from the stable linear dynamic state-space system of the form [47]: 
                                           

                                      ( ) ( ) ( )

( ) ( )T

x t Ax t Bu t

y t E x t

= +

=

•

    (6.1) 

 Here t is the time variable, x(t) is a state vector, u(t) the input excitation vector and y(t) the 
output measurement vector. A is the system matrix, B and E are input and output distribution 
array, respectively.  The aim of MOR is to generate a low-dimensional approximation in the 

form                                         ( ) ( ) ( )

( ) ( )
r r

T
r

z t A z t B u t

y t E z t

= +

=

•

    (6.2) 

where Ar is the reduced system matrix, BBr and Er are reduced input and output distribution 
arrays. Equation 6.2 describes the dependence of the output vector y(t) on the input vector 
u(t) and the dimension of the reduced state vector z(t) is much less then the dimension of 
the original state vector x(t). The main problem with equation (6.1) is the high dimensionality 
of the vector, which is typically equal to the product of the number of unknowns in a system 
of PDEs to be solved by the number of nodes introduced during the discretization process. 
This in turn leads to the high dimension of system matrices and finally to the huge 
computational cost to compute the system’s response. 
In performing model reduction on equation (6.1), the hope is that, for many systems of 
ODEs of practical importance, the behavior of vector x in time, t, is effectively described by 
some low-dimensional subspace as follows 
 
                                                 x(t) = X  z(t) + ε     (6.3) 
 
Equation 6.3 states that, with the exception of a small error described by vector ε, the 
possible movement of the n-dimensional vector x belongs, for all times, to a k-dimensional 
subspace, with k much smaller than n, and is determined by an n x k transformation matrix 
X. The matrix is composed from k n -dimensional vectors that form a basis for the reduced 
subspace, and the k -dimensional vector z represents a new low order set of coordinates for 
the given basis [47].The task of model reduction is to find such a subspace for which the 
error difference in equation 6.3 is minimal. When the subspace is found, equation 6.1 should 
be projected onto it, and this projection process produces a system of ODEs of reduced 
order of equation 6.2. 
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Figure 6.1 Schematics of the system before and after the model reduction step [49] 
 

Krylov subspace allows us to obtain a low-dimensional subspace in equation 6.3. The best 
known Krylov subspace methods are Arnoldi process, Lanczos, GMRES (generalized 
minimum residual) and BiCGSTAB (stabilized biconjugate gradient). Due to its mathematical 
simplicity and numerical stability, Arnoldi process is the most suitable tool for model order 
reduction, in comparison with other methods [48]. More information about Krylov subspace 
and Arnoldi process can be found in [46, 48]. 
 
6.2 Defining our model 

   
 In our problem, after discretization, a system of ordinary differential equations is obtained 
                                                          M x E x Kx Bu

y Cx
+ + =

=
    (6.4) 

 Remark:  Most of the problems in mechanical systems in motion, as well as general, are usually 
described by systems of ODEs of second order in time. As already discussed in chapter 4, in 
harmonic analyses DOF responses are assumed to be sinusoidal and governed by equation 4.1. 
Substitution of the equation 4.1 into the linear equations of motion yields the following second 
order equation: 

M u C u Ku F+ + =                                              
where M, C and K are system matrices, u is the degree of freedom and F is load. It is a simple 
matter to convert it to the form of a first order equation by increasing number of unknowns and 
equations by a factor of two, e.g., by treating the first derivatives in time as unknown. Thus 

M u C u Ku F+ + = together with y=du/dt, becomes 
                                     

                                     0
. .

0 0 0
M y C K y fd

I u I udt
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
which is in the form of first order equation.  
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where x is the vector of unknowns that includes all degrees of freedom, M , E, K are the 
mass, damping and stiffness matrices, B is the input, C the output matrix, u is the vector of 
inputs and y is the vector of outputs. After solution the model, our software uses a binary 
FULL file with the element matrices in order to assemble the global system matrices. The file 
format is documented and ANSYS supplies a library of Fortran subroutines to work with it. 
  
6.3  mor4ansys 
 
The software more4ansys has been developed in simulation group of university of Freiburg. 
The developed software comprises the two almost independent modules. The first one 
reads binary ANSYS files and assembles a dynamic system in the form of equation 6.1 for 
the first order systems or for the second order systems of equation 6.4. Then the second 
module applies the model reduction algorithm to equation 6.1 or 6.4, that is, it finds a low-
dimensional subspace X in equation 6.3 such that it allows us to reproduce the harmonic 
behavior of the original state vector with required accuracy. The mor4ansys implement the 
block Arnoldi algorithm and follows the following steps: 

 
 Step 1: Reads system matrices from ANSYS 
• First order ODEs 
• Second order ODEs 
 
Step 2: Performs model reduction 
• Match Coefficients of Taylor Expansion of the transfer function. 
• The Arnoldi process finds a projection matrix. 
• Projection produces the reduced model 
No user intervention is required and in many cases, the dimension of the reduced model up 
to 30 is already enough. 
 
Step 3: Write the reduced model in matrix-market format 
• Currently simulation with the reduced model is done in Mathematica. 
 
-------------------------------------------------------------------------------------------------------------------------- 
 
6.4 MOR results 
 
The computational time required for model extraction and for 21 frequency steps 

simulation, both of the full and the reduced order model are reported in table 6.1. The use of 
MOR allows a considerable speed up of the simulation time and even higher speed up 
factors are expected if finer frequency discretization is used. The simulation time of a 
harmonic analysis is a product of solution time for a complex linear system by the number of 
frequencies needed. Hence model reduction allows us to save the simulation time by a 
factor equal to a number of frequencies at which the harmonic response is required. For 
example, if it is necessary to estimate the transfer function at ten frequencies, then the 
model reduction plus the simulation of the reduced system is roughly ten times faster than 
the simulation of the original system. 
 

It has been observed that for many ANSYS models the order of the reduced system 30 is 
enough to accurately represent the original high-dimensional system [48]. Hence, for 
simplicity we limit the analysis of the computational cost to this case. The simulation time of 
the reduced system comprising 30 equations is very small and we can neglect it. Thereafter, 
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in the case when several simulations with different input functions are necessary (the 
system-level simulation case), the advantage of model reduction is out of question. 
 
 

Computation Time (s) 
ANSYS Harmonic simulation: 
                                                for one frequency 
(No. of nodes: 48779) 
                                                for 21 frequencies 
 

 
127 

 
127*21=2667 

MOR (mor4ansys):  
                                   Reading the file 
 
                                   Arnoldi  Process (30 vectors) 
                                               ---------------------------- 
                                                 TOTAL 

 
2.3 

 
34.0 

 
36.3 

 
Table 6.1 Computational time comparison (4 Gb RAM in second) 

 
 In order to find the accuracy of model order reduction, we try to calculate the DOF of a node 
within the coil and a node inside the conductor. The obtained results are shown in figure 6.1 
to 6.6.   
 
 Figure 6.1 shows comparison between the full model and the reduced model simulation 
results for magnetic potential of a node within the coil and figure 6.2 illustrate the relative 
error of reduced model, both as a function of frequency in log scale. 
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Figure 6.1 Comparison between the full model and the reduced model simulation results for magnetic 
potential of a node within the coil 
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Figure 6.2 Relative error of the reduced model simulation results for magnetic potential of a node 
within the coil 

 
 
Figure 6.3 depicts comparison between the full model and the reduced model simulation 

results for voltage of an arbitrary node inside the conductor and figure 6.4 illustrate the 
reduced model relative error, both as a function of frequency in log scale. 
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Figure 6.3 Comparison between the full model and the reduced model simulation results for voltage 
of a node in conductor 
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Figure 6.4 Relative error of the reduced model simulation results for voltage of a node in conductor 
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Figure 6.5 Comparison between the full model and the reduced model simulation results for magnetic 
potential of a node in conductor 
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Figure 6.6 Relative error of the reduced model simulation results for magnetic potential of a node in 

conductor 
 
Figure 6.5 illustrates comparison between the full model and the reduced model simulation 

results for magnetic potential of an arbitrary node inside the conductor and figure 6.6 
illustrate the reduced model relative error, both as a function of frequency in log scale, too. 
 
All figures shows that applied model order reduction is a very strong tool with respect to 

accuracy. The errors are in the range of less than 0.001%.  
 
Furthermore, we have shown that in the case of linear first order system (equation 6.1 and 
6.4) modern model reduction techniques can speed up finite element harmonic simulation 
significantly. As a conclusion, we can say that reduction of simulation time is essential for 
design optimization and system-level simulation and by model order reduction: 
 

• Models of small dimension can be simulated in very short time. Especially, it is important 
when the frequency scan of a wide range frequency is necessary or an iterative optimization 
process is applied to find the best design.  
 
• Moment matching via the Arnoldi process allows us to reduce the dimension of the original 
system by many orders of magnitude. 
 
• The model reduction process is automatic as it is based on a formal procedure. 
 
• The method can be applied to original model in dimension of up to 500 000 nodes. 
 
• In many cases, the dimension of the reduced model up to 30 is already enough.  
 
 And finally the accuracy of MOR is significant.    
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7 Outlook 
 
Our efforts in this project, mostly concentrated on uniformity of magnetic field within the 

micro solenoidal coil with non-circular cross section. In order to make a model we consider 
the following assumptions: 
 

• 2-dimentional axis-symmetric model: The Freiburg University's ANSYS 
license allowed only the maximum node no. around 125,000. Therefore, we 
try to capture the essential features of the coil in a simple model. 

 
• Linear material properties: The linear material properties will be an 

acceptable approach if the temperature considered to be almost constant (in 
the range of room temperature).  

 
• The medium around the coductor was cosidered as air with μr equal to 1. In 

reality, cells are located in a tube of liquids, e.g., water. For most of the 
materials, the magnetic susceptibility is in the ppm range. However, for large 
magnetic fields, the effect of local variations in susceptibility, χν, cannot be 
ignored and results in undesired image artifacts in MRI experiments. 

 
• Low frequency analysis: For low-frequency problems, the displacement 

current in Maxwell's equations is ignored ( /D t
→

∂ ∂ =0). Therfore, charge 
accumulation and capacitance effects are excluded. This approach is valid 
when the working wavelength is much larger than the geometric dimensions 
of structure.  

 
•  Since the capacitive effects were neglected, the obtained DOF results do not 

show any resonance behavior under frequency scans.      
 

  And focus on field homogeneity does not mean that other specifications of coil are not 
important. The noise analysis and the coil resistance, quality factor as a good indication of 
coil's potential performance for a NMR experiment, susceptibility matching and signal to 
noise ratio are very important criteria for coil design.    
 
In the future, one can continue this study in the following ways: 
 

• 3D  model and analysis 
 
• Studying the temperature evolution in system under a very high frequency RF and 

implementation of an iterative method in case of nonlinear material properties 
(Coupled problem) 

 
• Considering the different media within the coil and studying the effects of different 

materials with different susceptibility on the magnetic field. 
 
• The FE model can be coupled with circuit components ( including capacitive 

properties) 
 

• Full-wave analysis (considering the displacement current and capacitive effects) 
and comparing the result with low-frequency analysis. 
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• When coil's self capacitance is taken into account, one can carry out the quality 

factor calculations for different coil shapes. 
 
• Optimizing the shape in order to achieve higher Q-factor or higher SNR, too. 

 
• Model order reduction of a LCR equivalent circuit model (considering self 

capacitance) and studying the resonance behavior of the coil in a given frequency 
domain.     
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Appendices 
 
 

1)  ANSYS CODE FOR MODELING AND SIMULATION OF A MICROCOIL 
 
 

/filname,geo,0 
 
/prep7 
 
/title, current-fed solid conductor in free space 
/com,   Calculate the voltage in the coil from an applied AC current 
 
et,1,53,,,1        ! air 
et,2,53,1,,1        ! current force wire 
et,3,110,,,1       ! far-field 
 
 
emunit,mks 
 
 
!****************** geometry and material properties 
 
mp,murx,1,1 
mp,murx,2,1 
mp,rsvx,2,17e-9   ! resistivity of coils T Omh*um 
 
 
m=1 
p1=14.57e-6*m 
p2=26.11e-6*m 
p3=26.79e-6*m 
p4=12.50e-6*m 
s1=80.22e-6*m 
s2=79.37e-6*m 
s3=80.75e-6*m 
s4=78.92e-6*m 
r1=20.00e-6*m 
r2=20.00e-6*m 
r3=20.00e-6*m 
r4=20.00e-6*m 
h1=15.51e-6*m 
h2=13.18e-6*m 
h3=5.64e-6*m 
h4=5.00e-6*m 
f=3e8 
 
 
 
!****************** build and mesh model 
 
rectng,s1,s1+r1,p1,h1+p1 
rectng,s2,s2+r2,h1+p1+p2,h1+p1+p2+h2 
rectng,s3,s3+r3,h1+p1+h2+p2+p3,h1+p1+h2+p2+p3+h3 
rectng,s4,s4+r4,h1+p1+h2+p2+h3+p3+p4,h1+p1+h2+p2+h3+p3+p4+h4 

 i



pcirc,0,5*s1,0,90 
pcirc,0,10*s1,0,90 
aovlap,all 
asel,s,loc,x,s4,s1+r1 
aatt,2,,2 
cm,coil,area 
csys,1 
asel,s,loc,x,0,5*s1 
asel,u,,,coil 
aatt,1,,1 
cm,air,area 
asel,all 
asel,s,loc,x,5*s1,10*s1 
aatt,1,,3 
cm,far,area 
allsel 
csys,0 
lsel,s,loc,x,0,s1+r1 
lsel,r,loc,y,h1+p1+h2+p2+h3+p3+h4+p4 
lesize,all,,,100 
lsel,all 
mshape,0,2d         ! mapped mesh with quads 
mshkey,1 
esize,,50 
amesh,coil          ! mesh far-field and coil  
csys,1 
lsel,s,loc,x,5*s1 
lesize,all,,15 
lsel,all 
mshape,0,2d         ! mapped mesh with quads 
 
esize,,1 
amesh,far 
smrtsize,2 
esize,s1/12 
mshape,1,2d          ! specify triangle elements 
mshkey,0             ! free mesh 
amesh,air              ! mesh air region 
 
 
!**************** set boundary conditions 
 
csys,0 
n1=node(s1,p1,0)                    ! get a node on the coil 
n2=node(s2,h1+p1+p2,0)              ! get a node on the coil 
n3=node(s3,h1+p1+h2+p2+p3,0)        ! get a node on the coil 
n4=node(s4,h1+p1+h2+p2+h3+p3+p4,0)  ! get a node on the coil 
csys,1 
nsel,s,loc,x,10*s1 
sf,all,inf           ! set infinite surface flag 
allsel 
csys,0  
allsel 
nsel,s,loc,x,s1,s1+r1 
nsel,r,loc,y,p1,h1+p1 
cp,1,volt,all 

 ii



allsel 
nsel,s,loc,x,s2,s2+r2 
nsel,r,loc,y,h1+p1+p2,h1+p1+h2+p2 
cp,2,volt,all 
allsel 
nsel,s,loc,x,s3,s3+r3 
nsel,r,loc,y,h1+p1+h2+p2+p3,h1+p1+h2+p2+h3+p3 
cp,3,volt,all 
allsel 
nsel,s,loc,x,s4,s4+r4 
nsel,r,loc,y,h1+p1+h2+p2+h3+p3+p4,h1+p1+h2+p2+h3+p3+h4+p4 
cp,4,volt,all 
allsel 
f,n1,amps,1e-12        ! current applied 
f,n2,amps,1e-12        ! current applied 
f,n3,amps,1e-12        ! current applied 
f,n4,amps,1e-12        ! current applied    
allsel 
nsel,s,loc,x,0 
d,all,az,0 
allsel 
finish 
 
!************************* Solution **************** 
ALLSELE 
/SHOW,JPEG 
JPEG,ORIENT,HORIZ 
/GFILE,600, 
/RGB,INDEX,100,100,100,0 
/RGB,INDEX,0,0,0,15 
 
/solu 
!* 
antype,harm 
eqslv,spar, 
harfrq,f, 
nsubst,1 
kbc,1 
!* 
hropt,full 
hrout,on 
!* 
solve 
finish 
 
!************************* Post processing ***** 
 
Pi=acos(-1) 
/post1 
 
subset,1,1,,0                !read real solution 
*get,dofv1_r,node,n1,volt 
*get,dofv2_r,node,n2,volt 
*get,dofv3_r,node,n3,volt 
*get,dofv4_r,node,n4,volt 
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subset,1,1,,1 
*get,dofv1_i,node,n1,volt 
*get,dofv2_i,node,n2,volt 
*get,dofv3_i,node,n3,volt 
*get,dofv4_i,node,n4,volt 
 
v1_r=(-2*Pi*f*dofv1_i) 
v2_r=(-2*Pi*f*dofv2_i) 
v3_r=(-2*Pi*f*dofv3_i) 
v4_r=(-2*Pi*f*dofv4_i) 
v1_i=(2*Pi*f*dofv1_r) 
v2_i=(2*Pi*f*dofv2_r) 
v3_i=(2*Pi*f*dofv3_r) 
v4_i=(2*Pi*f*dofv4_r) 
sum_V_r=2*v1_r+v2_r+v3_r+v4_r 
sum_V_i=2*v1_i+v2_i+v3_i+v4_i 
 
*CFOPEN,voltage,coil 
*vwrite,v1_r,v2_r,v3_r,v4_r,sum_V_r 
(E15.5,' ',E15.5,' ',E15.5,' ',E15.5,' ',E15.5) 
*vwrite,v1_i,v2_i,v3_i,v4_i,sum_V_i 
(E15.5,' ',E15.5,' ',E15.5,' ',E15.5,' ',E15.5) 
 
*CFCLOS 
 
subset,1,1,,0 
 
asel,s,loc,x,s1,s1+r1 
asel,r,loc,y,0,h1/2 
curr2d 
c1_r=-tcurr 
 
asel,s,loc,x,s2,s2+r2 
asel,r,loc,y,h1/2+p1,h1/2+p1+h2 
curr2d 
c2_r=-tcurr 
 
asel,s,loc,x,s3,s3+r3 
asel,r,loc,y,h1/2+p1+h2+p2,h1/2+p1+h2+p2+h3 
curr2d 
c3_r=-tcurr 
 
asel,s,loc,x,s4,s4+r4 
asel,r,loc,y,h1/2+p1+h2+p2+h3+p3,h1/2+p1+h2+p2+h3+p3+h4 
curr2d 
c4_r=-tcurr 
 
avg_C_r=(c1_r+c2_r+c3_r+c4_r)/4 
 
subset,1,1,,1 
 
asel,s,loc,x,s1,s1+r1 
asel,r,loc,y,0,h1/2 
curr2d 
c1_i=-tcurr 
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asel,s,loc,x,s2,s2+r2 
asel,r,loc,y,h1/2+p1,h1/2+p1+h2 
curr2d 
c2_i=-tcurr 
 
asel,s,loc,x,s3,s3+r3 
asel,r,loc,y,h1/2+p1+h2+p2,h1/2+p1+h2+p2+h3 
curr2d 
c3_i=-tcurr 
 
asel,s,loc,x,s4,s4+r4 
asel,r,loc,y,h1/2+p1+h2+p2+h3+p3,h1/2+p1+h2+p2+h3+p3+h4 
curr2d 
c4_i=-tcurr 
 
avg_C_i=(c1_i+c2_i+c3_i+c4_i)/4 
 
 
mag_Z=avg_C_i**2+avg_C_r**2 
imped_r=-(avg_C_r*sum_V_r+avg_C_i*sum_V_i)/mag_Z 
imped_i=-(avg_C_r*sum_V_i-avg_C_i*sum_V_r)/mag_Z 
 
*CFOPEN,current,coil 
*vwrite,c1_r,c2_r,c3_r,c4_r,avg_C_r,imped_r 
(E15.5,' ',E15.5,' ',E15.5,' ',E15.5,' ',E15.5,' ',E15.5) 
*vwrite,c1_i,c2_i,c3_i,c4_i,avg_C_i,imped_i 
(E15.5,' ',E15.5,' ',E15.5,' ',E15.5,' ',E15.5,' ',E15.5) 
 
*CFCLOS 
 
/post1 
!* 
APLOT 
EPLOT 
PLESOL, H,SUM, 0 
!* 
PLESOL, JT,SUM, 0 
!* 
/EFACET,1 
PLNSOL, H,SUM, 0 
/post1 
 
HRCPLX,1,,400                            ! 90 for imaginary, 0 for real and bigger than 360 for amplitude 
PLESOL, H,y 
csys,0 
nsel,s,loc,x,0,0.8*s4 
nsel,r,loc,y,0,h1+p1+h2+p2+h3+p3+h4+p4 
esln,r,0,all 
 
/post1 
 
ETABLE,Mag_Field,H,y                                !Make a table for H 
PLETAB,Mag_Field,AVG 
PRETAB,Mag_Field 
!* 
SSUM                                                                ! Sum of H 

 v



*get,sum_H,SSUM,0,ITEM,Mag_Field      ! Get  sum of H 
!*  
!* 
ETABLE,,VOLU                                             ! Make a table for Element Volume(Area) 
!PLETAB,VOLU,AVG 
PRETAB,VOLU 
!* 
SSUM                                                           ! Sum of area 
*get,sum_A,SSUM,0,ITEM,VOLU           ! Get sum of Area 
!* 
!* 
SEXP,H2,MAG_FIELD, ,2,1,                     ! Make a Table for H-Square 
!PRETAB,H2 
PRETAB,H2 
!* 
SSUM                                                        ! Sum of H-Square 
*get,sum_H2,SSUM,0,ITEM,H2            ! Get sum of H-Square  
!* 
!* 
SMULT,A_H,Mag_Field,VOLU,1,1          ! Make a Table for H*A        
!PLETAB,A_H         
PRETAB,A_H 
!* 
SSUM                                  ! Sum of H*A 
*get,sum_A_H,SSUM,0,ITEM,A_H          ! Get sum of H*A 
!* 
!* 
SEXP,A_H2,Mag_Field,VOLU,2,1          ! Make a Table for H-Square*A        
!PLETAB,A_H2         
PRETAB,A_H2 
!* 
SSUM                                                               ! Sum of H-Square*A 
*get,sum_A_H2,SSUM,0,ITEM,A_H2        ! Get sum of H_Square*A 
!* 
!*  
Mean_H=sum_A_H/sum_A                  ! Weighted Mean For H 
Sq_Mean_H=Mean_H**2 
!* 
!* 
Dev_H=sqrt((sum_A_H2-Sq_Mean_H*sum_A)/sum_A)     ! Standard Devaition  
!* 
!*  
Obj_fun=Dev_H/Mean_H                  ! Object Function 
 
*CFOPEN,H-Field,sum 
*vwrite,sum_H,sum_A,sum_H2,sum_A_H,sum_A_H2,Mean_H,Dev_H,Obj_fun 
(E15.5,' ',E15.5,' ',E15.5,' ',E15.5,' ',E15.5,' ',E15.5,' ',E15.5,' ',E15.5) 
*CFCLOS 
PLESOL, H,y 
  
finish 
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2) MATHEMATICA CODE FOR CALLING THE OPTIMIZATION PROGRAM DOT 

 
lnk = Install["/usr/groups/simulation/simstaff/user/rudnyi/mathlink/dot/calldot"] 
 
writeParam[X_] := Module[{of}, 
 of = OpenWrite["param.ans", FormatType->OutputForm]; 
 Write[of, "p1 = "<>ToString[X[[1]]*1*^-6, CForm]]; 
 Write[of, "p2 = "<>ToString[X[[2]]*1*^-6, CForm]]; 
 Write[of, "p3 = "<>ToString[X[[3]]*1*^-6, CForm]];   
 Close[of] 
] 
 
eval[X_] := Module[{}, 
 writeParam[X]; 
 Print[FullForm[X]]; 
 Run["./ans81 model"]; 
 res = Import["B_Field.sum", "List"]; 
 Print[res]; 
 {res[[7]]/res[[3]],{}} 
] 
 
(*eval[{40.*^-6, 40.*^-6, 40.*^-6}]*) 
 
 
x = {30., 40., 50.}; 
xl = x/4; 
xu = x*2.5; 
prpm = Table[0., {20}]; 
iprm = Table[0, {20}]; 
method = 1; 
iprint = 3; 
minmax = -1; 
ncon = 0; 
nrwk = 8000; 
nriwk = 8000; 
 
runDOT["eval", "outfile", "postfile", method, iprint, x, xl, xu, minmax, ncon, prpm, iprm, 
nrwk, nriwk]  
 
Uninstall[lnk] 
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3) COMMENTS ON STEPS OF RUNNING MOR4ANSYS 

 
1) building model 
 
model.ans 
 
produces file.db 
 
 
2) making matrices  
 
matrices.ans 
 
produces filefreq1.full and outdof.txt 
 
3) model reduction 
 
user/rudnyi/mor/v2.0/mor4fem filefreq1.full -C outdof.txt -s UMFPACK -x 1e5 -t 1e-20 
 
produces mor.* files 
 
4) harmonic simulation in ANSYS 
 
harmonic.ans 
 
produces harmonic.txt 
 
5) comparison 
 
plots.nb in Mathematica 
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4) MATRICES.ANS CODE (FOR MODEL ORDER REDUCTION) 
 
resume 
*CFOPEN, outdof, txt, 
*vwrite,'azcenter','AZ',n0 
%C %C %I 
*vwrite,'voltcoil','VOLT',n1 
%C %C %I 
*vwrite,'azcoil','AZ',n1 
%C %C %I 
*CFCLOS 
/filname,filefreq1 
/solu 
allsel 
antype,harmic 
eqslv,sparse 
harfrq,1/2/3.141592653589793 
nsubst,1 
wrfull,1 
solve 
fini 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ix



5) HARMONIC.ANS CODE (FOR MODEL ORDER REDUCTION) 
 
resume 
 
nstep=21 
nvar=4 
n=nstep-1 
freqmin=1 
freqmax=1e8 
 
allsel 
 
*dim,tmparr1,array,1 
*dim,tmparr2,array,1 
*dim,tmparr3,array,1 
 
/prep7 
*cfopen,harmonic.txt,names 
*vwrite,'Frequency' 
%C 
*vwrite,'azcenter','voltcoil','azcoil'  
%C %C %C 
*cfclos 
 
 
*CFOPEN, harmonic,txt 
*vwrite,'%%Matrix','Market m','atrix ar','ray real',' general'  
(5A8) 
*VWRITE,nvar,n 
%I %I 
 
finish 
 
*do,i,1,nstep 
/solu 
antype,harm 
eqslv,sparse 
nsubst,1 
outres,NSOL,last  
kbc,1 
expf=(i-1)/(nstep-1)*(log10(freqmax)-log10(freqmin))+log10(freqmin) 
f=10**expf 
harfrq,f     
solve 
finish 
 
/post26 
NSOL,2,n0,AZ 
abs,3,2 
vget,tmparr1(1),3 
 
NSOL,2,n1,VOLT 
abs,3,2 
vget,tmparr2(1),3 
 
NSOL,2,n1,AZ 

 x



abs,3,2 
vget,tmparr3(1),3 
 
*VWRITE,f,tmparr1(1),tmparr2(1),tmparr3(1) 
(E25.15,' ',E25.15,' ',E25.15,' ',E25.15,' ') 
finish 
 
*ENDDO 
 
*CFCLOS 
 
finish 
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LIST OF PHYSICAL CONSTANTS AND SYMBOLS 
 

Symbol Description Units 
h Plank's constant 6.626 x 10-34Js 
kB Boltzmann's constant 1.380 x 10-23 VAs/K 
μ0  Magnetic permeability of free space 4л x 10-7 Vs/Am 
μr Relative, material magnetic permeability ≥1 
ε0 Dielectric permeability of free space  8.854 x 10-12 As/Vm 
εr Relative, material dielectric permeability ≥1 
c Speed of light in free space 2.998 x 108 m/s 
μi

m Magnetic dipole moment with particle 
index i 

Am2

γ Gyromagnetic ratio MHz/T=As/Kg 
f, υ Frequency 1/s 
ω Angular momentum 1/s 
ω0 Spin precession frequency, Larmor 

frequency 
1/s 

λ Wavelength 1/m 
Nα , Nβ Low and high energy population spin 

densities 
1 

ζ Induced voltage V =kg m2/ As3

χν Magnetic susceptibility < 0 or ≥0 
δ Skin depth m 
ρ free electric charge density C/cm3

J Angular momentum Kg m2/s 
T Torque Kg m2/s2

H Magnetic field A/m 
B Magnetic flux density T= Vs/m2=kg/ As2

M Net magnetization Am2

E Energy J=V A s= kgm2/s2

T Temperature K 
T1 Longitudinal relaxation time  s 
T2 Transverse relaxation time s 
R Resistance Ω = kgm2/A2s3

L Inductance H=Vs/A=kgm2/A2s2

C Capacitnace F=As/ V=A2s4/kgm2

Q Quality factor  
t Time s 
i Current A 
D Electric displacement C/m2

σ Standard deviation   
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