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Abstract 
In this paper two different methodologies for model 

order reduction for thermal problems are analyzed. These 
methodologies (Arnoldi algorithm and Proper Orthogonal 
Decomposition) face the problem from two different 
points of view. The first, deals with systemn matrices 
obtained from the space discretization of the system of 
partial differential equations (e.g. finite element method), 
which describe the relationship between the different 
nodes of the system, while Proper Orthogonal 
Decomposition deals with the input-output information of 
the system. Both methodologies have its own advantages 
and inconvenients, which will be discussed for a 
particular MEMS device. 

1. Introduction 
MEMS devices have a wide variety of actuation and 

sensing principles. In some of these MEMS devices 
temperature plays an important role in the dynamics of 
the system. Moreover the sensing or actuating part of 
some of these devices is thermally induced. Examples of 
such devices are thermo-pneumatic micropumps [1], 
microthrusters [2], microhotplate gas sensors [3], or 
thermopile based IR sensors [4]. 

In all these cases, modeling and simulation can  
address many important steps in the prototype design of 
the final device, such as optimizing sensor sensitivity, 
reducing device size, or improving power consumption. 
In some cases [2], optimal performance needs a real-time 
control of the input according to output magnitudes. In 
such a case, a feed-back loop with a model description of 
the system must be solved to predict the required new 
input values. It could also happen [1], that the device 
model must be included in the feed-back loop of a 
system-level simulation where other models describing 
other devices appear interacting with each other. These 
models could be obtained by a space discretization of the 
partial differential equations describing the physics 
involved. Different methods exist to discretize these 
equations obtaining a system of ordinary differential 
equations, but the most widely used is the finite element 
method. This method for practical applications tipically 
produces systems with 104-106 degrees of freedom. The 
computational cost for solving these huge systems is very 
expensive and it is quite common to spend several 
minutes (or hours) solving the whole system for a certain 
given input. This fact makes it prohibitive to include these 
full models in real-time control feed-back loops, or in 
system level simulations [1]. 

Model order reduction is a set of techniques which are 
focused on reducing the number of degrees of freedom. 
Indeed, there is a huge variety of techniques and different 
points of view to face this issue. Despite that, two main 
different groups can be distinguished.  

The first group of techniques deals with the 
description of the system dynamics in the state-space 
formulation. They are based on mathematical 
transformations applied to the huge system matrices to 
obtain smaller matrices which with a small error should 
reproduce the dynamics of the whole system. The most 
basic technique of this group is Guyan reduction [5] 
which can only reproduce exactly the static behaviour of 
the original system, although complex techniques based 
on this reduction offer better performances. Recently, 
reduction techniques based on Padé or Padé-type [6] 
approximations of the transfer function via Lanczos [7] or 
Arnoldi [8] algorithms have gained great interest among 
engineers. The performance of these techniques is much 
better than Guyan techniques and a methodology insight 
is out of the scope of this paper. This methodology will 
only be introduced and its limitations explored in this 
paper. Arnoldi methodology has been done with 
mor4ansys [9,10], a software developed by IMTEK which 
is available in internet. The reader should address to the 
references for further details. 

The second main group of techniques could be 
understood as a system identification techniques [11]. 
These techniques do not need the state-space description 
but an input-output data for a certain input must be 
supplied. This is the reason why they are mostly suited for 
extracting models of real systems from empirical data. 
The system itself is a blackbox for these methodologies, 
and the aim is to obtain a reduced order model which can 
describe adequately the input-output behaviour On the 
other hand, as the input-output data are obtained for a 
particulat input waveform, the accuracy of the model 
behaviour for different input waveforms must be 
explored. This group of techniques can even be splitted in 
two major sub-groups. One of them deals with RC-ladder 
identification techniques [12], and the other deals with 
proper orthogonal decomposition techniques. RC-ladder 
identification techniques are aimed to construct an RC 
circuit formed of Cauer networks stages which are 
interconnected forming a ladder [13]. The values of the 
different elements of the network are then optimized in 
order to fit the response of the different network nodes to 
(experimental or simulation) data in a least squares sense. 
These RC-ladder networks have the inherent limitation  
that they can only predict the thermal evolution in the 
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nodes where they were fit. Instead, Proper Orthogonal 
Decomposition (POD) and Arnoldi algorithm can predict 
the temperature evolution in all the nodes conforming the 
model. Proper Orthogonal Decomposition is 
mathematically related to well-known techniques as 
Principal Component Analysis (PCA), also known as 
Karhunen - Loève decomposition (KLD), and the singular 
value decomposition method (SVD) [14]. From a 
mathematical point of view, POD techniques provide an 
optimal (in least-square sense) low-order subspace to 
project the full system output. A critical point in POD is 
the selection of the excitation waveform, as well as the 
time stamps where the solution is computed. The 
excitation waveform must contain energy in the whole 
frequency range of interest. A typical choice, although not 
the only possibility, is to select a step input. For the time 
stamps (also known as snapshots), we selected logspaced 
points in the time axis in order to cover the system 
dynamics over a large range of time constants. It is 
important to note, that other selection can bring different 
efficiency in the reduction. This paper will be devoted to 
principal component analysis limitations and capabilities 
compared to Krylov methods. As a case study, these 
techniques will be applied to a thermopile based IR sensor 
[4].  

2. IR Thermopile Sensor Structure 
The basic structure of the thermopile based IR sensor, 

is a silicon bulk with a thermally isolated membrane. This 
membrane contains the hot junctions of the thermopiles, 
while the cold junctions are located in the opposite side of 
the membane, over the silicon bulk, in order to assure a 
maximum thermal isolation. The IR radiation is absorbed 
in a boron doped silicon rectangle located in the center of 
the membrane. In addition, a n+polysilicon layer can be 
electrically heated for test or calibration purposes. 

 

 
Figure 1: Thermopile IR sensor structure (top) and 

cross-sectional view (bottom) including, 1, isothermal 
radiation absorber; 2,6, SiO2/Si3N4 support and 
passivation layers; 3, 4, poly-n+/Al thermopile stripes; 5, 
polysilicon heater layer. 

 
In order to assure a high thermal isolation from the 

ambient, the thermopiles are located inside a silicon-
oxide/silicon-nitride sandwich with a very low thermal 
conductivity (see figure 1). The sensor is fabricated with 

CMOS compatible micromachining processes, in order to 
integrate on the same chip the needed electronics to 
amplify the output signal of the sensor. A total of 65+65 
thermocouples are used to amplify the sensor sensitivity. 
A top view of the final device can be seen in figure 2.  

   
Figure 2: Top view photographs of the IR thermopile sensor. 

3. FEM Modelling 
The comercial software ANSYS® 8.1 has been used to 

build a finite element model of the device. A 3D model 
has been considered, with shell elements conforming the 
membrane, because the thermal gradients perpendicular to 
the membrane are assumed to be negligible [15]. Due to 
simmetry only one half of the device is modelled. The 
thermal properties of the different materials used in the 
finite element model are summarized in table 1. All the 
properties are considered temperature independent, and 
have been evaluated at T=300K.  

density thermal 
conductivity 

specific heat 
capacity 

ρ K C 
Material 

[Kg/m3] [W/(m·K)] [J/(Kg·K)] 
Silicon 2328 150 700 
Si3N4 3180 24 880 
SiO2 2200 1.4 780 

Aluminium 2692 235 900 
Poly-n+ 2328 30 754 
Table 1: Material properties. 

 
Figure 3: Meshing of the finite element model.  
 
Air conduction and radiation have been included in 

the simulation. Despite that, because of the small 

    
     



temperature change, the non-linearities introduced by the 
radiation are negligible. Initial conditions are applied for 
all the ndoes at T0=300K. Dirichlet boundary conditions 
have been applied to the bottom of the silicon bulk at 
T=300K. Emissivity is set globally to ε=0.2, except for 
the absorber where ε=1 is assumed. A heat flux step of 
Φ=10W/m2 is applied to consider the incident radiation. 
Finally a heat exchange of h=180W/(K·m2) is considered. 
The obtained meshing consists of 1970 nodes and 8984 
elements (see figure 3). The resulting stationary thermal 
distribution can be seen in figure 4. 

 
Figure 4: Stationary state temperature distribution for 

a heat flux step of Φ=10W/m2. 
 
The thermal transient simulation is carried out from 

t=10-7s to t=1s, with 20 logspaced time points per decade, 
with a total number of 141 time stamps. From a practical 
point of view we are interested in the time evolution of 
the temperature difference between the hot junctions and 
the cold junctions. This is achieved by a volume weighted 
mean of the temperatures conforming the hot and cold 
junctions. For the finite element model this result is in 
figure 5. The maximum difference reached occurs for the 
stationary state and is 9.4mK.  
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Figure 5: Time evolution of the difference Thot-Tcold 

from the FEM model for a Φ=10W/m2. 

4. Model Order Reduction 
A deep insight in the theoretical aspects of Principal 

Component Analysis and Arnoldi algorithm is out of the 
scope of this work. Instead a detailed analysis of the 

results for the case study will be discussed. Heat 
conduction equation is written as: 

( ) ( )(, 1 · · ,
P

T x t
T x t P

t C
κ

ρ
∂ )= ∇ ∇ +

∂
 (1) 

where κ is the thermal conductivity, ρ the density, CP 
the specific heat capacity, and P is the power applied. 
After a spatial discretization using the Finite Element 
Method, this equation leads to a set of ordinary 
differential equations (ODE) which can be written as: 

′ + =CT KT P  (2) 

where C is the specific heat capacity matrix, K is the 
thermal conductivity matrix, P the applied power, and T 
the temperature vector. C and K ∈ Rn×Rn and P and T ∈ 
Rn, where n is the number of degrees of freedom resulting 
from the finite element model. Equation (2) is then a set 
of n first order ODE’s which can be solved numerically 
but with a high computational cost. This equation can be 
stated in state space formalism as: 

· ·
· ·

′ = +
= +

x A x B u
y C x D u

 (3) 

where x ∈ Rn are the state variables, u ∈ Rn the input 

vector and y ∈ Rn the output vector. In order to write 
equation (3) as equation (2), we must set: 

1

1

·

,     

−

−

= −

=
= =

A C K
B C
C I D 0

  

The basic idea of model order reduction is to describe 
the time variations of vector x with a low dimensional 
subspace as: 

·= +x M r ε  (4) 

where M ∈ Rn×Rk is the transformation matrix from 
the high-dimensional space to the low-dimensional space, 
with k<<n, r ∈ Rk is the reduced dimension state vector, 
and ε a small error which depends on the reduced order k. 
Replacing equation (4) in equation (3) leads to: 

  
· · · · · · ·

· · ·

T T T′ = +
= +

M M r M A M r M B u
y C M r D u

(5) 

where in the top equation a left product by MT has 
been applied. Considering that MT·M=I equation (5) can 
be written as: 

ˆ ˆ· ·
ˆ · ·

′ = +

= +

r A r B u

y C r D u
 (6) 

    
     



where: 
ˆ · ·
ˆ ·
ˆ ·

T

T

=

=

=

A M A M

B M B

C C M

 

k k

k n

n k

∈ ×

∈ ×

∈ ×

 (7) 

are the reduced matrices in the state space description. 
It is important to remark that the input we apply and the 
solution we obtain are both high-dimensional vectors. 
After model reduction, the solution can be obtained in a 
reduced dimension space with minimum computational 
effort, but it is an approximation to the finite element 
model solution obtained in equation (3). 

At this point both methodologies we are interested in 
will be applied to the case study. Arnoldi algorithm is 
applied to the constitutive matrices of the finite element 
model and as a result a transformation matrix between the 
high and the low-dimensional spaces is obtained [16]. 
Instead, principal component analysis is applied to the 
thermal evolution of all the nodes in the FEM model. This 
thermal evolution is computed as a transient solution of 
the finite element model at all the time stamps specified, 
in response to an incident irradiation flux step. As in the 
first case, the result is another transformation matrix with 
the same properties [14]. The resulting reduced systems 
of equations for each case can be written as equation (6) 
which we will solve to obtain approximations to the full 
system solution. 

5. Results and Discussion 
In order to compare the performance of the different 

methods, we have built three reduced models for each of 
the reduction techniques. The reduced systems orders are 
5, 10 and 15. The full system and the reduced systems 
have been solved by means of the Backward Euler 
method. The chosen time points to evaluate the solution 
are the same we used in the finite element solution, from 
t=10-7s to t=1s with 20 logspaced time points per decade. 
As a figure of merit to evaluate the goodness of the 
reduced model approximation, a mean least squares 
relative error has been used, defined as : 

2

1

1 r FEMN
i i

FEM
i i

T T
N T

ε
=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑  (8) 

where i corresponds for the different time stamps (or 
frequency points), Tr is the reduced order system solution 
and TFEM is the full system solution. 

To emphasize to good agreement of all the reduced 
models to the full system solution, in figure 6 the step 
response is plotted. In figure 7 we plot the difference of 
input response for reduced order systems respect full 
system solution. The y-scale has been adjusted to 
distinguish all the signals. As we can see the worst 
approximation corresponds to the PCA with order 5. 
While the best solutions correspond to PCA for orders 10 
and 15. Arnoldi solutions have the same behaviour but all 
of them suffer from a very small offset for the stationary 

solution. In relative magnitudes it corresponds to 
approximately 0.004%. 
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Figure 6: temperature increase versus time comparison. 
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Figure 7: temperature increase error versus time 

comparison. 
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Figure 8: temperature increase relative error versus 

time compared to full system solution for the different 
reduced order systems. 

 

    
     



In figure 8 we have plotted the relative difference of 
the input responses for the reduced order systems. As it is 
expected the maximum relative errors occur where the 
signal is small, for short times. For Arnoldi reduced 
models the relative error for short times is around 20%, 
while PCA reduced models is below 2% except for the 5 
order PCA model.  

Due to the fact that we have the state space realization 
of the reduced systems, it is quite simpe to compute their 
frequency behaviour and compare it to the full system 
frequency behaviour. This will give us more information 
on how will be the system output for sinusoidal inputs. 
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Figure 9: bode plot comparison. 
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Figure 10: Bode error diagram plot for the reduced 

systems related to the full system bode diagram. 
 
The frequency response of the full and reduced 

systems have been evaluated from f=1Hz to f=10MHz, 
with 20 logspaced points per decade. Figure 9 shows this 
frequency behaviour for all the systems, and a good 
agreement is found for all the reduced systems. In order to 
evaluate more precisely these differences in figure 10 we 
plot the bode error diagrams for the different reduced 
systems. The worst agreement corresponds to the 5 order 

Arnoldi system, whose discrepancies are noticeable for 
frequencies higher than 1kHz. The 5 order PCA and 10 
order Arnoldi have a similar behaviour and their 
discrepancies are considerable around 10kHz. The 15 
order Arnoldi system has an absolute error lower than 
2dB which happens for frequencies higher than 100kHz. 
Finally, 10 and 15 order PCA systems have the best 
agreement with the full system frequency behaviour. 
Their maximum discrepancy occurs for the maximum 
frequency computed and is around 0.5dB.  

 
Reduced 
system 

ε 
time domain 

ε 
frequency domain 

PCA 5 1.602·10-2 1.085·10-4

PCA 10 1.588·10-6 1.625·10-7

PCA 15 9.463·10-6 1.117·10-6

Arnoldi 5 1.905·10-3 2.162·10-4

Arnoldi 10 2.865·10-3 1.203·10-4

Arnoldi 15 5.033·10-3 3.216·10-5

Table 2: Results summary: ε is the mean least squares 
relative error (see equation (8)) for the different reduced 
models in time domain and frequency domain.  
 

As a summary of these results, in table 2 the mean 
least squares relative errors have been computed 
following equation (8) for time and frequency. 

Principal component analysis as it has been presented 
here has two clear advantages with respect to Arnoldi 
algorithm. Its inputs are the step responses of the whole 
nodes of the finite element model, it can also be applied 
to experimental measurements, always that we have a 
large number of them. Moreover, when the data supplied 
comes from a finite element model, there is no restriction 
with respect to the linearity of the system which is being 
reduced. It is also possible to apply this technique to non-
linear models. On the other hand, Arnoldi algorithm can 
only be applied to linear systems, although in many 
applications small errors are made when a nonlinear 
system is linearized around a suitable linearization point 
[16]. The restriction to linear systems in the Arnoldi 
algorithm must only be applied to the system matrices, no 
restriction appears when the nonlinearity is only present 
in the input. Another approach to avoid this problem 
when the system is weakly nonlinear is to apply Arnoldi 
algorithm to a quadratic approximation by a second order 
Taylor series expansion [17]. It is also true that Arnoldi 
algorithm is based on an expansion at a certain frequency, 
which in this case was f=0Hz. But there is no limitation to 
choose as an expansion point another frequency, for 
instance the working frequency of the device which is 
being reduced, in order to improve its frequency 
behaviour around this point. Even a multi-point expansion 
about several frequencies and restricting the reduced 
transfer function to match the first moments for all the 
frequencies has also been proposed, and known as 
rational-Krylov method [18].    

    
     



6. Conclusions 
A detailed comparison of two different order model 

reduction methodologies has been presented. In the case 
study presented, principal component analysis seems to 
produce a better agreement with full system, than the 
Krylov-based method. Despite that, PCA has an important 
additional computational cost, since the transient full 
system behaviour has to be solved in order to obtain the 
transformation matrix. Further studies must be made with 
more advanced Krylov-based techniques.  
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