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Dynamic analysis is an impor-
tant part of modern simula-
tion strategy. However, finite 
element models are inherently 
high dimensional and, as a 
result, their dynamic analysis 
is computationally expensive. 
For this reason, it is impossib-
le to include a finite element 
model directly into system 

level simulation where a 
device dynamic model should 
be simulated as a part of a 
whole system including dri-
ving circuitry. 
In structural mechanics, model 
reduction based on mode super-
position or Guyan reduction 
has been in use for long time 
in order to speed up dynamic 

simulation [1]. These two tech-
niques can be found nowa-
days in almost any commercial 
implementation of the finite 
element method and they are 
employed not only for struc-
tural mechanics but also for 
other physical domains. Model 
reduction can also be conside-
red as a formal mathematical 
problem to approximate dyna-
mic behavior of a high-dimen-
sional model. Recently mathe-
maticians extensively resear-
ched the problem from such a 
viewpoint [2]. They say that if 
we look at a model reduction 
problem formally then neit-
her mode superposition nor 
Guyan reduction produces an 
optimal reduced model.
The goal of this paper is to 
introduce modern formal 
model reduction methods 
and then present examples of 
their use for different appli-
cations in design and system 
level simulation (see Fig. 1). 
We limit ourselves by model 
reduction for linear models as 
only in this case the model 
reduction process can be fully 
automated. We start by short 
introduction to linear model 
reduction. Then we discuss 
how it can be employed for 
the second order systems, as 
mathematicians developed 
the model reduction theory 
originally for the first order 
dynamic systems. After that 
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Table 1: Methods for linear model reduction  (2)

Method Advantages Disadvantages 

SVD-based (Truncated 
Balanced Approximation, 
Singular Perturbation 
Approximation, Hankel-
Norm Approximation). 

Have a global error 
estimate, can be used in a 
fully automatic manner. 

Computational complexity 
of conventional 
implementations is O(N 3),
can be used for systems 
with order less than a few 
thousand unknowns only. 

Low-rank Gramian 
approximants (SVD-
Krylov).

Have a global error 
estimate and the 
computational complexity 
is acceptable. 

Currently under 
development.

Pade approximants via 
Krylov subspaces by means 
of either the Arnoldi or 
Lanczos process (implicit 
moment matching). 

Very advantageous 
computationally, can be 
applied to very high-
dimensional linear systems. 

Does not have a global 
error estimate. 

Figure 1: 
Model reductin is an efficient means to enable system-level simulation.
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into account during model 
reduction. Here is the main 
difference between modern 
model reduction with mode 
superposition and the Gyuan 
reduction. In order to find the 
low-dimensional subspace, 
mode superposition and the 
Guyan reduction use only the 
two system matrices, while 
modern model reduction uses 
all four matrices in Eq (1). Yet, 
it should be stressed that input 
functions u do not take part in 
the model reduction process 
and they are transferred from 
the original to the reduced 
model without any changes.

Antoulas [2] has suggested a 
classification of model reduc-
tion methods shown in Table 1. 
From a theoretical viewpoint, 
the best are the Singular Values 
Decomposition (SVD)-based 
methods, as they have global 
error estimates. As a result, 
model reduction can be made 
completely automatic. An 
engineer has to specify permis-
sible tolerance for the approxi-
mation and then the required 
dimension of a reduced model 
is chosen based on the global 
error estimates. Unfortunately, 
computational time in this 
case grows cubically with the 

we present the software MOR 
for ANSYS developed at IMTEK 
that can perform modern 
model reduction directly for 
finite element models made 
in ANSYS. Finally, we describe 
several industrial applications 
in which MOR for ANSYS has 
been employed.

Linear Model Order Reduction

After the discretization in 
space, we obtain a system of 
ordinary differential equations 
(ODEs). We start by a system of 
ODEs of the first order in the 
form accepted in the control 
theory.

where x is the state vector 
containing degrees of freedom 
in the finite element model, E 
and K are the system matrices. 
The main difference from a 
typical finite element notation 
is 1) splitting of the load vec-
tor to a product of a constant 
input matrix B and a vector 
of input functions u and 2) 
the introduction of the output 
vector y that contains some 
linear combinations of the 
state vector that are of interest 
in system level simulation.
The main assumption for 
model reduction is that the 
high dimensional state vec-
tor actually moves in the low-
dimensional subspace and we 
can project the original system 
on that subspace (see Fig 2). 
As such, the goal of model 
reduction technique is to find 
the low-dimensional subspace 
V that accurately captures the 
dynamics of the state vector.
Input and output in dynamic 
system (1) affect its dynamic 
behavior considerably and 
it is important to take them 
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dimension of the state vec-
tor. SVD-based methods with 
better scaling computational 
properties are still under deve-
lopment and, at the moment, 
implicit moment matching is 
the only option that can be 
employed for industrial appli-
cations right now.
The idea of moment matching 
is to transform the dynamic 
system (1) into the Laplace 
domain and then to find such 
a low-dimensional system that 
has the same first derivates in 
the Taylor expansion around 
some point as the original 
model. The direct implemen-
tation of this idea is numeri-
cally very unstable but mathe-
maticians have found that, by 
means of the generation of 
a particular Krylov subspace, 
one finds such a projection 
subspace that the reduced 
model certainly matches first 
moments. It is interesting to 
note that the use of moment 
matching for model reduction 
in structural mechanics can 
be traced back to works of 
Wilson [3] in 1982 and Craig 
[4] in 1991. Note that implicit 
moment matching is applicab-
le to a linear dynamic system 
with both symmetric and 
unsymmetric system matrices.
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Figure 2: 
Model reduction as a projection of the high dimensional system 

onto the low-dimensional subspace.
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Treatment of Second Order 
Systems

Most often, the discretization 
by the finite element method 
produces a system of ODEs of 
the second order as follows

There are three options to pro-
ceed with model reduction in 
this case, as shown in Fig. 3. 
First, in the common case of 
proportional damping

the damping matrix can sim-
ply be ignored during the pro-
cess of constructing the pro-
jection basis. In this case, only 

the mass and stiffness matrices 
together with the input matrix 
are employed to generate the 
required Krylov subspace. The 
damping matrix is projected 
afterwards and because of (3) 
it can actually be computed 
from reduced mass and stiff-
ness matrices. It is worthy to 
note that in the case of pro-
portional damping, moment 
matching properties have been 
proved to hold for any values 
of � and � [5].
In the general case of non-
proportional damping, it is 
always possible to transform 
dynamic system (2) to the first 
order system by increasing the 
dimension of the state vector 
twice. The disadvantage here is 
that a reduced system is obtai-
ned in the form of the first 

order system and that compu-
tational requirements increase 
because of the increase in the 
dimension of the state vector. 
There are new results from 
mathematicians following [4] 
that allow us to build a second 
order Krylov subspace. This 
removes both disadvantages 
mentioned before.

MOR for ANSYS

MOR for ANSYS (http://
ModelReduction.com/) is 
open-source software deve-
loped originally at IMTEK to 
employ modern model reduc-
tion directly for ANSYS models 
[6]. It reads binary ANSYS 
FULL and EMAT files in order 
to extract the system matrices 
and then runs a model reduc-
tion algorithm (see Fig. 4). 
MOR for ANSYS uses implicit 
moment matching based on 
the block Arnoldi algorithm, 
as it is the most efficient com-
putational method. Time to 
perform model reduction in 
this case is comparable with 
that for a static solution provi-
ded there is enough memory. 
In Table 2, the time to gene-
rate the low-dimensional sub-
space of dimension 30 by the 
Arnoldi algorithm is compared 
with the time for a static solu-
tion in ANSYS for several ther-
mal and structural models. In 
our experience, 4 Gb of RAM is 
enough to treat this way many 
finite element models up to 
500 000 degrees of freedom.

The structural model of butter-
fly microgyroscope (see Fig. 5) 
has been developed in ANSYS 
[7] and the number of active 
degrees of freedom after the 
discretization was 17361. MOR 
for ANSYS has been used to 
generate a reduced model of 
dimension 30. The harmonic Table 2:  Computational times on Sun Ultra-80 with 4 Gb of RAM

p

Dimension Number of nonzeros 
in K 

Static solution in 
ANSYS in s 

Time to generate 
V in s 

4 267 20 861 0.63 0.90 

11 445 93 781 2.2 4.0 

20 360 265 113 15 26 

79 171 2 215 638 230 310 

152 943 5 887 290 95 211 

180 597 7 004 750 150 280 

375 801 15 039 875 490 830 

Figure 3: 
Model reduction options for a second order system.
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response as well as the relative 
difference between the original 
and reduced model in frequen-
cy range from 300 to 300000 
Hz is shown in Fig. 6. The rela-
tive difference is about 10-9 
up to 105 Hz, in other words, 
the reduced model describes 
the dynamic behavior of the 
original model in a wide fre-
quency range with exceptio-
nal accuracy. The relative error 
increases to 1% after 105 Hz, 
yet it should be mentioned 
that the expansion point was 
equal to zero.
In the case when several 
simulations with different 
input functions are necessa-
ry (system-level simulation), 
the advantage of model reduc-
tion is out of the question. 
Yet, during the design phase, a 
reduced model should be gene-
rated each time when a user 
changes the geometry or mate-
rial properties of the original 
model. In this case, a reduced 
model may be used just once. 
Nevertheless in the case of the 
Arnoldi algorithm, the model 
reduction time is considerably 
smaller than time for transient 
or harmonic response simu-
lation of the original system. 
Hence, model reduction can 
also be used as a fast solver to 
speed up transient and har-
monic response simulations. 
These two different situations 
for the use of model reduction 
are shown in Fig. 7.

Applications

In this section, we list several 
applications with references 
to the original papers where 
the use of linear model reduc-
tion implements the ideas dis-
played in Fig. 1 and Fig. 7. 
More case studies can be found 
at the MOR for ANSYS site.
A microhotplate device is 

Figure 4: 
MOR for ANSYS block scheme

Figure 5: 
The butterfly gyroscope model.

Figure 6: 
Harmonic response simulation for the butterfly gyroscope model 

(red line). The green line shows the relative difference between 
the full and reduced models (the axis is on the right).
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basically a resistor heated by 
current in order to keep the 
temperature at the desired 
level. Microhotplates are often 
employed in gas sensors, ane-
mometers (flow meters), opti-
cal filters and other applicati-
ons. Electro-thermal modeling 
is an essential part of the deve-
lopment. The assumption of 
homogeneous heat generation 
allows us to move the electrical 
part into the input function for 

a thermal part and thus makes 
possible the use of linear model 
reduction. The methodology 
of using model reduction in 
this case is presented in [8]. It 
should be mentioned that this 
problem was the starting point 
for the MOR for ANSYS deve-
lopment.
The response of a microacce-
lerometer is dynamic by its 
nature, as the inertia effects 
cannot be neglected. Hence the 

Figure 7: 
Use of model reduction during design and system-level simulation.

performance function to opti-
mize the microaccelerometer 
must include results of transi-
ent simulation. In Ref [9], the 
optimization of a microacce-
lerometer has been performed 
with the use of MOR for ANSYS 
in order to speed up transient 
simulation and hence reduce 
optimization time.
Radio frequency microelectro-
mechanical systems (RF MEMS) 
are nowadays considered to be 
a main building block of futu-
re generations of reconfigurab-
le wireless terminals. During 
the design phase of RF-reso-
nators, their electromechani-
cal harmonic response has to 
be accurately predicted and 
eventually modified in order to 
satisfy with desired specifica-
tions. This requires a harmo-
nic pre-stressed analysis, since 
the harmonic signal is gene-
rally superimposed to a static 
voltage, which influences the 
device electrical and mechani-
cal properties (a small-signal 
approximation). In Ref [10], a 
strategy has been developed to 
use MOR for ANSYS as a tool 
to automatically extract a com-
pact model of an RF-resonator 
for circuit optimization directly 
from the finite element model.
Computational acoustics inclu-
ding fluid-structure interaction 
is most often based on the 
linear approximation and, as 
such, it is well suited for model 
reduction. For example, in a 
modern passenger vehicle or 
a commercial airplane, the 
noise, vibration and harshness 
(NVH) performance is one of 
the key parameters, which the 
customer uses to assess product 
quality. To this end, acoustics 
simulation is indispensable 
to evaluate the low frequen-
cy NVH behavior of automo-
tive/aircraft interiors during 
the design phase. In Ref [11], 

Figure 8: 
System simulation of brushless DC motor with parameters 

from the finite element simulation.
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MOR for ANSYS has been used 
during the optimization pro-
cess for a vibro-acoustic pro-
blem, with stacking sequences 
of the composite structure as 
design variables.
As was already mentioned, the 
method and software presented 
in this paper are limited to line-
ar dynamic systems only and it 
seems that there is no way to 
generalize the approach for an 
arbitrary nonlinear dynamic 
system. Fortunately, it is pos-
sible to find an effective way 
to generate macromodels for a 
particular application by explo-
ring its specific properties. For 
example, in [12] it was demon-
strated how to use co-energy in 
order to effectively generate a 
reduced model for a magnetic 
actuator. This allows us to per-
form system level simulation 
with a reduced device model 
derived directly the finite ele-
ment simulation (see Fig. 8).
This approach can be used 
for plungers, of brushless DC 
motors, permanent magnet 
synchronous machines, swit-
ched reluctance machines as 
well as relays.
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