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ABSTRACT

During recent years, several groups have shown that
parametric model reduction is possible in general. In
particular, it has been shown that it allows us to generate
compact thermal models while preserving film
coefficients as parameters. Unfortunately, in order to run
algorithms, a user should specify how many moments
and what type to generate in advance and there were no
formal rules to this end but a "trial and error" approach.
We present an approach based on a local error in the
transfer function and show that it can automate the
process to build a dynamic compact parametric thermal
model in much greater extent. We demonstrate that our
algorithm can preserve three film coefficients for the first
thermal model and material properties such as heat
conductivity and heat capacity for the second model.

1. INTRODUCTION

Model reduction is a rapidly developing area of
mathematics [1]. It allows us to take a high-dimensional
finite element model developed at device level simulation
and convert it efficiently into a low-dimensional
approximation for system level simulation [2]. Model
reduction approaches have been successfully applied to a
thermal problem to automatically generate a dynamics
compact thermal model [3][4][5][6][22].

However, in its original form model reduction does
not allow us to preserve parameters in the system matrices
that naturally arise in many applications. Fortunately, a
new development, that is, parametric model reduction,
allows us to overcome this limit.

In our knowledge, the first work on parametric model
reduction has been presented by Weile et al [7] in 1999
and applied to describe frequency depended surfaces in
[8]. This approach has been generalized from two to many

parameters in [9] and in parallel re-discovered in
[10][11][12]. We have suggested an empirical solution to
a similar problem in [13] and an alternative algorithm in
[14]. Note that different authors use different names for
the same method: multiparameter model reduction in [9],
multidimensional model reduction in [10][11] and
multivariate model reduction in [12]. Our choice in this
respect is parametric model reduction as it allows us to
preserve parameters in system matrices in the symbolic
form.

In [12][14][15], this approach has been successfully
applied to a thermal problem when film coefficients have
been preserved as symbols in a reduced model. Although
these works have demonstrated that this is the right way
to go, an important practical question remains
unanswered. That is, how to choose moments to include
into the reduced model. A straightforward approach to
choose some order and then generate all the moments up
to this order does not scale well with the number of
parameters [9]. For example, if we choose to preserve four
film coefficients then a reduced model made from all first
derivatives has the dimension of 6, a reduced model made
from all second derivatives has the dimension of 21, and
a reduced model from all third derivatives already has the
dimension of 56 (see Appendix F in [9]). At the same
time, we may need derivatives of higher order than three
to describe accurately transient behavior of the original
model.

The explosion in the dimension of a reduced model
is due to mixed moments (mixed derivatives). In [15] the
authors have observed that one can actually ignore mixed
moments in the case of a thermal problem and proved this
by numerical simulation. However, even in this case it is
unclear how to choose the number of moments along each
parameter automatically. Although time in the form of the
Laplace variable formally looks like the film coefficient in
the transfer function, we may need more moments along
the time axis. In [15] the authors have limited themselves



E. B. Rudnyi, L. H. Feng, M. Salleras, S. Marco, J. G. Korvink
Error Indicator to Automatically Generate Dynamic Compact Parametric Thermal Models

to a stationary problem and have not researched this
problem further.

The use of local error estimators has been researched
in [16][17] (see also discussion in [2]). Error indicators
for Arnoldi-based model reduction have been suggested in
[18]. In the present paper, we use these results as
inspiration for a heuristic procedure suited for parametric
model reduction. We suggest an approach that controls
the dimension of the reduced model automatically based
on local error control. We apply the approach to two
thermal models and report our numerical observations.
First is a thermal model of a microthruster unit [19] (see
also [13][14]) where the goal is to preserve three film
coefficients. Second is a thermopile based IR detector [21]
when a compact thermal model should preserves material
properties of the gas in the symbolic form.

2. OVERVIEW OF PARAMETRIC MODEL
REDUCTION

Let us briefly review the application of parametric model
reduction to a thermal problem. The discretization in
space by the finite element/volume/difference method of
the heat transfer equation leads to a system of ordinary
differential equations as follows

€ 

E + qiEii∑( ) dT (t)dt
+ K + piKii∑( )T (t) = Bu(t)

y(t) = CT (t)
, (1)

where 

€ 

T (t) is the vector of unknown temperatures at the
nodes. 

€ 

E  and 

€ 

K  are the heat capacity and heat
conductivity system matrices, 

€ 

B  is the input matrix, and

€ 

C  is the output matrix. The vector 

€ 

u  comprises input
functions such as heat sources. The output matrix
specifies particular linear combinations of temperatures
that of interest to an engineer. Our goal is to preserve the
parameters 

€ 

qi  and 

€ 

pi  in the symbolic form in the reduced
model (a film coefficient or material property). A
parameter contributes to the global system matrix by
means of the matrix 

€ 

Ei  or 

€ 

Ki .
The transfer function of (1) can be expressed as

follows

€ 

H (s) = C{s(E + qiEii∑ ) + K + piKii∑ )}−1B , (2)

and in addition to the Laplace variable s  it contains the
parameters 

€ 

qi  and 

€ 

pi .
Model reduction is based on an assumption that there

exists a low-dimensional subspace 

€ 

V  that accurately
enough captures the dynamics of the state vector 

€ 

T (t) :

€ 

T ≈ Vz . (3)
In order to find such a subspace 

€ 

V  that does not
depend on parameters to preserve, the transfer function (2)
can be treated as a function in many variables (

€ 

s ,

€ 

qi  and

€ 

pi ) and one can perform its multivariate expansion. Then

€ 

V  is taken as a subspace that spans multivariate moments
of (2) (see [9]-[15]). This way, 

€ 

V  does not depend on
parameters in (1) and (2).

Provided 

€ 

V  is known, one obtain a low-dimensional
model by projecting (2) on 

€ 

V  as follows

€ 

{VTEV + qiV
T EiVi∑ } dz(t)

dt
+

{VTKV + piV
TKiVi∑ }z(t) = VTBu(t)

. (4)

Eq (4) preserves the original parameters in the
symbolic form and as a result we refer to this approach as
parametric model reduction.

3. LOCAL ERROR CONTROL

We have limited ourselves to the Single-Input-Single-
Output case when the transfer function (2) is a scalar, the
input matrix 

€ 

B  is a vector and the output matrix 

€ 

C  is a
single row. Another simplification is that we ignore
mixed moments following the observation in [15]. As a
result, the model reduction algorithm is practically
equivalent to that described in [15] except that we take
into consideration the Laplace variable as well.

We assume that a user specifies the range of interest
for the frequency and parameters:

€ 

smin < s < smax
qi,min < qi < qi,max
pi,min < pi < pi,max

, (5)

Additionally a user chooses expansion points for the
Laplace variable and parameters. In our work, we take the
expansion point for the Laplace variable as zero because
this allows us to preserve the stationary state. Finally, a
user also specifies the error 

€ 

ε  for the maximum frequency
of interest 

€ 

fmax  (

€ 

smax = i2πfmax ). In our experience, 1%
error for 100 Hz corresponds to reasonably accurate
approximation in the time domain although this may
depend on the frequency spectrum of the input function.

Our main idea is to choose the number of vectors in
the Krylov subspaces in such a way that the difference
between the transfer functions of the original and reduced
models at the maximum frequency is below of the
specified level for the allowable range of parameters as
follows

€ 

H (smax ,qi , pi) −Hreduced (smax ,qi , pi) < ε , (6)

We present numerical results in the next two
sections.

4. CASE STUDY I: PRESERVING FILM
COEFFICIENTS

We have used the thermal problem from [13][14]. It is
described in [19] and available on-line in the Matrix
Market format [20] at
http://www.imtek.uni-freiburg.de/simulation/benchmark.

Fig. 1 shows the device. The heat is generated by a
heater and propagates through the device to three
boundaries (top, side, bottom). Each boundary has its
own film coefficient and the goal is to preserve them in
the symbolic form. As a result, Eq (1) is written as
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( )

)()(

)()(
)(

tCTty

tButTKhKhKhK
dt
tdT

E bbsstt

=

=++++ , (7)

where th , sh  and bh  are the film coefficients at the top,

side and bottom respectively (they replace ip  in Eq 1).
The dimension of the full model is 4257.

We have chosen the same expansion point for all film
coefficients as 100, =ih  and the same maximum value of

610 . The maximum frequency was chosen as 100 Hz and
required accuracy at this frequency is 1%.

Fig. 1. A 2D-axisymmetrical model of the micro-thruster
unit (not scaled). The axis of the symmetry on the left
side. A heater is shown by a red spot.

As the mixed moments have been neglected, it was
necessary to generate four subspaces along the Laplace
variable and the three film coefficients. The first subspace
has been made along the Laplace variable. We have used
the  value  o f  the  transfer function at

]10,10,10,100[ 0,0,0,max ==== bst hhhsH  to keep the

local error below 1%. It was necessary to generate 28
vectors to reach desired accuracy. The next subspace has
been generated along th  and the value of the transfer

function at ]10,10,10,100[ 0,0,
6

max ==== bst hhhsH  has

been used for the local error control. It took 13 vectors to
reach the convergence. At this point, it happened that the
two next subspaces along sh  and bh  were unnecessary as
t h e  c o n v e r g e n c e  i n  r e s p e c t  t o

]10,10,10,100[ 0,
66

max ==== bst hhhsH  a n d

]10,10,10,100[ 666
max ==== bst hhhsH  has been

reached simultaneously while generating vectors for the

second subspace. As result, the dimension of the reduced
model was 41. The convergence history is shown in Fig.
2.

 

Fig. 2. Convergence history when the order to generate
subspaces was s , th , sh  and bh . Different markers show
the error at different values of the transfer function

],,,100[ max bst hhhsH = , where the values of the film
coefficients shown near to the marker.

It is worthy of noting that when we have changed the
order to generate subspaces to s , bh , sh  and th , the
final result was the same although the convergence history
became different (see Fig. 3). In this case, it happened
that generated along the Laplace variable reached the
convergence limit not only in  respect to

]10,10,10,100[ 0,0,0,max ==== bst hhhsH  but also for

]10,10,10,100[ 6
0,0,max ==== bst hhhsH  a n d

]10,10,10,100[ 66
0,max ==== bst hhhsH .  Then we

needed a subspace along th  only and the final dimension
of the reduced model was again 41.

Fig. 3. Convergence history when the order to generate
subspaces was s , bh , sh  and th . Different markers show
the error at different values of the transfer function

],,,100[ max bst hhhsH = , where the values of the film
coefficients shown near to the marker.
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Table 1. Simulation results for the reduced model as
compared with the original model.

toph sideh bottomh
Station-

ary
solution

Error (%)
in

stationary

Error (%)
in

transient

1 1 1 832. 0.11 0.47

1 1 100 85.8 0.0033 0.21

1 1 10000 39.2 0.21 0.24

1 100 1 50.0 0.044 0.15

1 100 100 47.8 0.031 0.15

1 100 10000 39.1 0.19 0.22

1 10000 1 38.3 0.066 0.17

1 10000 100 38.3 0.066 0.17

1 10000 10000 38.3 0.068 0.17

100 1 1 73.4 0.0031 0.20

100 1 100 55.4 0.00089 0.17

100 1 10000 36.8 0.17 0.21

100 100 1 43.6 0.027 0.15

100 100 100 42.4 0.020 0.15

100 100 10000 36.7 0.16 0.21

100 10000 1 36.0 0.056 0.17

100 10000 100 36.0 0.056 0.17

100 10000 10000 36.0 0.058 0.17

10000 1 1 7.56 0.000008 0.18

10000 1 100 7.56 0.000011 0.18

10000 1 10000 7.56 0.00016 0.18

10000 100 1 7.56 0.000007 0.18

10000 100 100 7.56 0.000003 0.18

10000 100 10000 7.56 0.00016 0.18

10000 10000 1 7.56 0.00068 0.18

10000 10000 100 7.56 0.00068 0.18

10000 10000 10000 7.56 0.00067 0.18

Simulation results for the reduced model of
dimension 41 and the original model of dimension 4257
are shown in Table 1. For 27 cases of different values of
film coefficients, we present the stationary temperature at
the heater, the error in the stationary state made by the

reduced model and the error in the transient step response
as compared with the original model. The error for
transient response was estimated as follows:

€ 

error = [ (T i−
ˆ T i)

2 ]1/ 2

i=1

n

∑ /[ Ti
2 ]

i=1

n

∑ (8)

where ),,( 21 nTTTT L= is the transient solution of the

original system (7) and )ˆ,ˆ,ˆ(ˆ
21 nTTTT L=  is the transient

solution of the reduced model (4).
Fig. 4 to 6 show the transient response of the

original model (red) and reduced model (green) for the
three different cases from Table 1. The difference is very
small and comparable to the line thickness.

Fig. 4. The transient response for the step input function:
temperature vs. log10[time] for the case when 1=th ,

1=sh  and 1=bh .

Fig. 5. The transient response for the step input function:
temperature vs. log10[time] for the case when 100=th ,

100=sh  and 100=bh .
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Fig. 6. The transient response for the step input function:
temperature vs. log10[time] for the case when

10000=th , 10000=sh  and 10000=bh .

5. CASE STUDY II: PRESERVING MATERIAL
PROPERTIES

A thermopile based IR detector can be fabricated with
CMOS compatible micromachining processes [21] (see
Fig. 7). The sensor is formed by a silicon wafer with a
thermally isolated membrane that contains the
thermocouples hot junction. The cold junctions are placed
in the opposite side of the membrane, over the silicon
bulk, to assure a maximum thermal isolation with respect
to the hot junctions. A silicon absorber is located in the
center of the membrane with the thermocouples hot
junctions. When the absorber is heated up, a temperature
difference appears between the hot and cold junctions.
Due to the Seebeck effect this temperature difference
produces a voltage difference that is the output signal of
the sensor. For calibration or test purposes, a heater is
also placed above the absorber with the corresponding
electrical contacts. Due to the thermal isolation the main
thermal flux from the hot junctions is to the surrounding
gas. Moreover, the output signal of the device is quite
sensitive to the thermal properties of this gas. This opens
new opportunities for its use to detect different gases.

The sensor operation can be modeled by a thermal
model however the gas material properties change and
they should be preserved in the symbolic form. In other
words, Eq (1) becomes

( ) ( )

)()(

)()(
)(

tCTty

tButTKK
dt
tdT

cEE c

=

=+++ κκ , (9)

where there are two gas-specific parameters: the heat
conductivity κ and the heat capacity per unit volume c .

The thermal sensor model in the form of Eq (9) has
been made in ANSYS and it had dimension of 2870. The
goal of model reduction was to find a low-dimensional
approximation and at the same time to preserve κ  and c .
We have chosen required range of the heat conductivity
and heat capacity to cover air, nitrogen, neon, argon,
krypton, and xenon.

Fig. 7. Micromachined thermopile based IR detector.

Parametric model reduction in this case happened to
be easier as the range of parameter values is much more
narrow than in the previous case. We needed to generate
10 vectors along the Laplace variable and then only one
vector along each parameter. Thus, the dimension of the
reduced system was equal 12.

Simulation results for the reduced model of
dimension 12 and the original model of dimension 2870
are shown in Table 2. For six gases, we present the
stationary temperature at the hot and cold junction, the
error in the stationary state made by the reduced model
and the error in the transient step response as compared
with the original model. Fig. 8 and 9 show the step
response of the full scale (red) and reduced models (green)
for the nitrogen: the difference is close to the line
thickness.

Table 1. Simulation results for the reduced model as
compared with the original model.

Gas Junction Stationary
solution

Error (%) in
stationary

Error (%) in
transient

air hot 0.00925 0.016 0.82

cold 0.000014 0.52 1.23

nittrogen hot 0.00933 0.015 0.83

cold 0.000014 0.49 1.19

neon hot 0.00706 0.083 0.78

cold 0.000012 2.56 3.69

argon hot 0.0105 0.0038 0.84

cold 0.000015 0.12 0.88

krypton hot 0.0122 0.000021 0.86

cold 0.000017 0.00068 0.74

xenon hot 0.0131 0.0013 0.87

cold 0.000017 0.040 0.79
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Fig. 8. The transient response for the step input function:
temperature vs. log10[time] for the hot junction in the
case of nitrogen.

 

Fig. 9. The transient response for the step input function:
temperature vs. log10[time] for the cold junction in the
case of nitrogen.

6. CONCLUSION

In our view, there are two main results of our study. 1)
Mixed moments seem to be unnecessary indeed in
agreement with [10][11][15]. 2) The local error control
allows us to choose the right number of moments in order
to give good approximation properties of the reduced
model.

Unfortunately, at present it is hard to say how general
these results are. No doubts, it is necessary to try more
different thermal models to gain more experience.
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