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I.1.1.1 Introduction

Domain simulators for process, equipment, device and environment
simulations play essential role in MEMS engineering. Mathematically
speaking, they solve coupled, multi-field partial differential equations (PDEs).
In most cases, the time-dependent solution of these equations is performed by a
semidiscretization method, which converts PDEs to ordinary differential
equations (ODEs) in time expressed in terms of so-called system matrices.

In the present work, the importance of having standards for the system matrices
is emphasized. One of the reasons is that there are modern mathematical
methods for the approximation of large-scale dynamic systems (automatic
model reduction) and in order to employ them one needs an easy access to the
system matrices.

The main problem is that in the general case the system matrices contain not
numbers but rather arbitrary functions. This poses a challenge to developing a
standard that can include any possible case and at the same time allows
developers to implement it efficiently. The ways to solve this problem are
discussed.

I.1.1.2 System Matrices and Integration in Time

In general case, partial differential equations are solved numerically by
performing their discretization based on a finite difference, finite volume, finite
or boundary element scheme [1]. A conventional approach for a time-depended
problem is first to make a semidiscretization in space. This converts PDEs to
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ordinary differential equations of a high dimension in time, which can be
integrated during the second step.

As a result, the whole simulation can be split to the two relatively independent
stages. During the first stage, a user builds a solid model of the device in
question, meshes and discretizes it in space according one of the methods listed
above. The final result is a system of ODEs of the second order that can be
written down as follows:

FCxxKxM =++ &&& , (1)

where M, K, and C are the system matrices, F is the load vector and x is the
state vector with unknown functions in time. In principle, the dimension of the
state vector may not be constant (mesh adaptivity in time, the birth and death of
the elements, and so on) but we will not consider such a case in the present
work.

The fact that the simulation is naturally divided into the two stages is used in
order to break the problem to individual parts and to solve them individually.
Thereafter, it is important to have a computer standard to express Eq (1), that
is, the system matrices.

The mathematical basis for the discretization in space and the integration in
time is quite different. As a result, the algorithms and their software
implementation are also different and their development requires quite a
different expertise. If the computer standard for the system matrices were
available, this would allow different developers to concentrate on a particular
problem and thus to speed up the development cycle.

At present, the bottleneck to simulate PDEs is the second stage that takes the
most computational time because of the high dimensionality of Eq (1). The size
of the state vector can routinely reach hundreds thousands, especially in the
case of 3D-simulations, and the integration in time can take hours of processor
time even on the modern computers. This prevents a system type simulation of
the whole chip based on the physics laws.

The approximation of large-scale dynamic systems is a rapidly developing area
[2][3]. It can be used to reduce the dimensionality of Eq (1) within acceptable
error bounds and thus to obtain compact models which can be solved quickly at
the system simulation level and at the same time without sacrificing the
precision. An alternative approach can be tied with fast integrators based on the
approximation of the matrix exponential [4]. In any case, the development of
these tools requires an easy computer access to the system matrices in Eq (1)
for MST applications.
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I.1.1.3 Stroring System Matrices

With an exception of the boundary element method, the system matrices are
sparse and it is necessary to take this into account. However now this is not a
major problem as this was an active area of research. There are well-known
techniques to store a sparse constant matrix [5]. This can be used for linear
dynamic systems, when the system matrices are composed just from numbers.
In the case of nonlinear systems, the sparsity can be preserved within so-called
an element-by-element approach [6] because in this case the assembling the
global matrices may require symbolic manipulations.

The principal problem is that in the general case the components of the system
matrices are some functions and this poses the main challenge: how to combine
universality and efficiency. Let us briefly consider possible solutions to this
problem. We will follow Ref. [7] in which this was discussed in relation with
computational thermodynamics.

At present, the interpretation of an ASCII expression at run-time is a popular
solution to the problem stated above. There are quite developed general
mathematical languages like Mathematica or Matlab, which allow us to write in
the computer format any mathematical statement. The interpretation is our
current solution for our research project on automatic model reduction of
nonlinear dynamic systems [8]. The drawback is loss of efficiency. Pre-
compilation or “just-in-time-compiling” can improve run-time effectiveness but
nevertheless may require a considerable amount of time during parsing.

It is possible to make a very efficient implementation including parsing if one
fixes the functional form and allows a user just to change some coefficients
within it. Unfortunately, it is highly unlikely that a single functional form will
be enough for all MST cases.

Thereupon, a natural extension is to allow for several functional forms. This
means that there are several precompiled and optimized functions for different
functional forms and the choice between them is made at the run-time
according to some field within the data structure. Of course, this should be
open to add new functional forms implemented in new functions at any time.
Object-oriented programming permits us to have an efficient software
implementation based on a virtual function call that is easy to maintain. Under
object-oriented programming, the field to distinguish between different
functions is even inserted automatically (a pointer to a virtual function table).
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The overhead of a virtual function call is pretty small. It can be made
completely negligible in our case if we group the system matrix components
according to their functional forms and make a single virtual function call for
the whole group.

In our view, XML presents a good framework to develop an external format to
support the several functional forms. Examples in XML in this respect are
presented elsewhere [7].

I.1.1.4 Conclusion

It is shown that the standard for the system matrices will stimulate research in
the area of automatic model order reduction and fast integrators for Eq (1). A
practical step toward such a standard should include a choice of the most
important functional forms for components of the system matrices encountering
during simulation of MST devices. XML is a good choice for an external
representation that is easy to parse and open to new extensions.
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