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1.
Introduction

 

T
he goal of M

E
M

S
 com

puter-aided design and sim
ulation is to accurately and efficiently represent the

behavior of the system
 in question. T

his allow
s technologists to develop a better understanding of the sys-

tem
, and as a result, to quickly choose an optim

al design. A
 hugely successful exam

ple of the application of
com

puter-aided design (C
A

D
) is in the sim

ulation of electrical integrated circuits, for w
hich the sim

ulator’s
output is alm

ost the sam
e as that produced by a real circuit prototype. T

his drives M
E

M
S

-designers to cre-
ate sim

ilar techniques for M
E

M
S

 sim
ulations.

It so happens that electrical circuit and M
E

M
S

 sim
ulations are quite different in nature (see, for exam

ple,
the discussion in R

ef. [1]). A
 circuit is rather accurately described by lum

ped elem
ents such as discrete

resistors, capacitors, inductors, transistors and so on. T
he transient response of the circuit can be im

m
edi-

ately w
ritten as a system

 of ordinary differential equations (O
D

E
s) w

ith the system
’s dim

ension of the
order of the num

ber of nodes connecting lum
ped elem

ents in the circuit. O
n the other hand, the governing

partial differential equations (P
D

E
s) for M

E
M

S
-devices do not alw

ays lend them
selves to intuitive lum

ping
as O

D
E

s, and hence are solved num
erically by first spatially sem

i-discretising them
 by m

eans of finite ele-
m

ent, boundary elem
ent and sim

ilar m
ethods. T

his also leads to a system
 of O

D
E

s, but its dim
ension

depends on the quality of discretization, and it could routinely lead to O
D

E
 system

 sizes of betw
een ten

thousand and a m
illion equations, especially in the case of 3D

 sim
ulations. T

he relation betw
een differen-

tial equations, m
eshes and m

odels are show
n in F

ig. 1.

R
ecent advances in com

puter pow
er allow

s us to solve very large system
s of O

D
E

s by brute force, one of
the m

ost striking exam
ples here being car crash sim

ulations (see, for exam
ple, R

ef. [2]). N
evertheless, this

typically requires parallel com
putations (see the benchm

ark report in R
ef. [3]) w

hich increases the cost of
sim

ulation drastically, and as a result, lim
its sim

ulation applicability considerably.

In order to facilitate com
putations, engineers often sim

plify the original rigorously derived governing
equations or, instead, use sim

ple em
pirical m

odels: w
e use the term

 “quick-and-dirty” (Q
A

D
) calculations.

A
nother approach, the topic of the present article, is to perform

 m
odel reduction, that is, to form

ally reduce
the dim

ension of a system
 of O

D
E

s derived from
 a rigorous approach before integrating it in tim

e.

To this end, taken from
 current m

echanical engineering practice, there are tw
o popular m

ethods, and both
are incorporated in som

e com
m

ercial softw
are sim

ulation tools: m
odal reduction [4] and dynam

ic conden-
sation [5]. T

he idea behind m
odal reduction is to approxim

ate a dynam
ic system

 response through a linear
com

bination of several, often low
-frequency, natural eigenm

odes of the system
. T

he second approach is
based on the G

uyan m
ethod [6], and is just an intuitive engineering extension of the S

hur com
plem

ent
m

ethod from
 a stationary to a tim

e-dependent form
ulation.

T
he m

ain problem
 w

ith all of the above order reduction m
ethods is that their success prim

arily depends
on engineering intuition, since they are not based on a solid m

athem
atical background. H

ence, they could  be referred to as non-autom
atic m

odel reduction m
ethods, and there appears to be no w

ay to im
prove this

situation. C
ertainly, w

ithout experience and intuition, w
e do not recom

m
end their use.

O
n the other hand, m

odel reduction has received a great deal of attention from
 m

athem
aticians, w

ho have
developed a num

ber of m
ethods w

ith w
hich to approxim

ate large-scale dynam
ics system

s (for a m
athem

at-
ical review

, see R
ef. [7]), and w

hich w
ill be referred to as autom

atic m
odel reduction. T

here are som
e spec-

tacular exam
ples w

here the dim
ension of O

D
E

s could be reduced by several orders of m
agnitude, alm

ost
w

ithout sacrificing precision, see e.g. [8] and [9]. H
ow

ever, there still rem
ains a certain gap betw

een these
ideas and com

m
on M

E
M

S
 engineering practice, and the aim

 of the present review
 is to start to fill this gap.

O
ur review

 com
plem

ents R
ef. [7] (w

here autom
atic m

odel reduction is considered m
athem

atically) on the
engineering level.

N
evertheless, the classification in this review

 is m
ade on the basis of a m

athem
atical perspective and

therefore follow
s the structure of R

ef. [7]. W
hat w

e have found is that, even though different engineering
com

m
unities are facing quite different challenges, m

any solution techniques are related. A
t a first glance,

the sim
ulation of groundw

ater flow
 in discretely fractured porous m

edia has nothing to do w
ith M

E
M

S
-

devices. It is therefore not surprising that these tw
o engineering com

m
unities do not follow

 each other’s
w

ork. H
ow

ever, the m
odel reduction problem

 they are trying to solve is absolutely the sam
e if w

e consider
it from

 a m
athem

atical view
point.

In principle, a system
 of O

D
E

s can also be solved faster if it is possible to increase the efficiency of the
tim

e integrator. R
ecently, there have been som

e prom
ising results in this direction based on m

atrix expo-
nential approxim

ations [10], but so far there are no engineering exam
ples, and hence this w

ill be outside of
the scope of our review

.

W
e start our review

 w
ith a statem

ent of the m
athem

atical problem
 for m

odel reduction, w
here w

e intro-
duce term

s and give them
 the equivalents used in the M

E
M

S
 com

m
unity. T

hen w
e consider low

-dim
en-

sional linear system
s of O

D
E

s. It is safe to state that, for this case, the problem
 of autom

atic m
odel

reduction is alm
ost com

pletely solved. It appears that alm
ost all m

odern m
odel reduction m

ethods for
large-scale system

s are based, in one w
ay or another, on K

rylov subspace m
ethods [11], and therefore a
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short introduction to K
rylov subspace m

ethods is given. A
fter that, w

e sw
itch to large-scale linear system

s
of O

D
E

s. T
he challenge faced here is that the com

putational tim
e required for a m

odel reduction of a linear
system

 of O
D

E
s depends on the problem

 dim
ension (the num

ber of equations in the system
) to the cubic

pow
er. C

om
putationally speaking, the algorithm

s for m
odel reduction appropriate for sm

all linear system
s

do not scale to large system
s. H

ere one can say that, in principle, the answ
er to autom

atic m
odel reduction

is know
n but the challenge rem

ains as to how
 to com

pute it in reasonable tim
e. F

inally, w
e take a look at

non-linear system
s of O

D
E

s. H
ere success depends on a particular problem

, and there are alm
ost no gen-

eral results. S
om

e algorithm
s for m

odel reduction exist but, in contrast to linear system
s, unfortunately, it

seem
s that hum

an intervention is inevitable.

It should be noted that w
e have not tried to reflect the priority of research groups in this field. In m

any
cases, our citations should actually be read as “see, 

 

for exam
ple,

 

 R
ef 

”.

 2.
M

athem
atical S

tatem
ent for M

odel R
eduction

 

In the present review
 w

e lim
it our consideration to a system

 of first order O
D

E
s, w

ritten in the form

 

(1)

w
here 

the 
unknow

n 
vector 

 
contains 

unknow
ns 

functions 
in 

tim
e, 

 

 

 

and

 

 

 

are system
 m

atrices, typically sparse and often sym
m

etric, and the vector 
 describes

the system
 load. If the m

atrices contain constant coefficients then the system
 of O

D
E

s is linear, and other-
w

ise w
e w

ill call it nonlinear. (Strictly speaking this is not correct. T
here is an interm

ediate case w
hen coef-

ficients depend on tim
e explicitly in w

hich case it is term
ed a linear tim

e-varying system
 [12]). M

echanical
system

s in m
otion, as w

ell as general electrical circuits, are usually described by system
s of O

D
E

s of sec-
ond order in tim

e. It is a sim
ple m

atter to convert them
 to the form

 of E
q (1) by increasing num

ber of
unknow

ns and equations by a factor of tw
o, e.g., by treating the first derivatives in tim

e as unknow
n. T

hus

(2)

together w
ith the new

 variables 
, becom

es

(3)

w
hich is again in the form

 of E
q (1). In som

e cases the m
ethods treated in the review

 can be generalized to
second order system

s of O
D

E
 directly.

 

T
he nam

ing of system
 m

atrices as w
ell as the notation is quite different for different engineering disci-

plines, but w
e hope that this does not pose an insurm

ountable problem
. In order to perform

 a m
odel reduc-

tion step, w
e rew

rite E
q (1) from

 an im
plicit to an explicit system

 of O
D

E
s

 

(4)

w
here

, 
 and 

, 
(5)

 

It is necessary to stress that E
q (5) should be read in a m

athem
atical, and not in a com

putational sense.
M

athem
atically this im

plies that m
atrix

 

 

 

 is not degenerate (i.e., it is invertible) and that this transform
a-

tion is possible in principle. If m
atrix 

 is degenerate then w
e do not have a system

 of O
D

E
s, but rather a

system
 of algebraic-differential equations (A

D
E

s). F
rom

 a com
putational point of view

 the operations in
E

q (5) are highly disadvantageous: first, they are prohibitively expensive for large-scale system
s, second,

…
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they destroy the sparsity of the original m
atrices. In other w

ords, com
putationally it is necessary to w

ork
w

ith the tw
o original sparse m

atrices. T
he question on how

 to effectively com
pute E

q (5) for the case of
K

rylov subspace m
ethods is discussed in S

ection 4.2.

T
he m

ain problem
 w

ith E
q (4) is the high dim

ensionality of the vector 
, w

hich is typically equal to the
product of the num

ber of unknow
ns in a system

 of P
D

E
s to be solved by the num

ber of nodes introduced
during the discretization process. T

his in turn leads to the high dim
ension of system

 m
atrices and finally to

the huge com
putational cost to solve the system

’s response.

In perform
ing m

odel reduction on E
q (4), the hope is that, for m

any system
s of O

D
E

s of practical im
por-

tance, the behavior of vector 
 in tim

e, 
, is effectively described by som

e low
-dim

ensional subspace as
follow

s

 

, 
, 

(6)

E
q (6) states that, w

ith the exception of a sm
all error described by vector 

, the possible m
ovem

ent
of the 

-dim
ensional vector 

 belongs, for all tim
es, to a 

-dim
ensional subspace, w

ith 
 m

uch sm
aller

than 
, and is determ

ined by an 
 transform

ation m
atrix 

. T
he m

atrix 
 is com

posed from
 

 

 

 

-
dim

ensional vectors that form
 a basis for the reduced subspace, and the 

-dim
ensional vector 

 represents
a new

 low
 order set of coordinates for the given basis.

 

T
he task of m

odel reduction is to find such a subspace for w
hich the error difference in E

q (6) is m
inim

al
according to som

e norm

 

(7)

N
ote that in E

q (7), w
e have functions in tim

e, so that the norm
 in this case is represented by som

e integral
over tim

e [13]. W
hen the subspace is found, E

q (4) should be projected onto it, and this projection process
produces a system

 of O
D

E
s of reduced order 

(8)

w
hich can then be used later on, perhaps in another sim

ulation package.

 

T
he physical background for m

odel reduction so far is that the discretization grid used to solve the origi-
nal P

D
E

s is far from
 an optim

al basis to represent the solution of the P
D

E
s. F

rom
 this point of view

, the
m

odel reduction according to E
q (7) is, in a sense, sim

ilar to adaptive grid generation [14]. H
ow

ever, the
opportunities of m

odel reduction to m
inim

ize the problem
 dim

ensionality are m
uch greater, because adap-

tive grid generation still deals w
ith local shape functions (w

ith local support), and the basis for the low
-

dim
ensional subspace in E

q (6) is form
ed from

 global dom
ain functions, that is, each vector includes a con-

tribution from
 the entire geom

etrical dom
ain (m

uch as eigenvectors do). F
orm

 this point of view
, m

odel
reduction com

plem
ents adaptive grid generation, or m

akes an alternative in a sense as w
ill now

 be
described.

A
n adaptive grid generation process starts w

ith som
e initial grid, and then the grid in different parts of the

com
putational dom

ain gets refined or coarsened based on a priori or a posteriori local error estim
ators [15].

A
 m

odel reduction strategy requires a fine initial grid, for w
hich it produces an effective global low

-dim
en-

sional basis, based on global error estim
ators. T

hen, in order to choose the best com
putational strategy, it is

necessary to com
pare the tim

e taken for m
odel reduction of a system

 of O
D

E
s built on the fine grid w

ith the
sum

 of tim
es for adaptive grid generation and the subsequent m

odel reduction of the refined grid system
 of

O
D

E
s.

W
e now

 take the next step and put the m
odel reduction problem

 into a m
ore general form

. O
ften, engi-

neers are not interested in the solution of E
q (4) over the entire com

putational dom
ain, that is, for values at

x
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all nodes, but rather in only a few
 of their com

binations. C
ontrol theorists [16] take this into account and

convert E
q (4) to

(9)

E
quation (9) treats the system

 as a “black box”, w
hich w

ould the case w
hen a system

’s high-dim
ensional

internal state vector 
, governed by O

D
E

s, is not directly accessible to an external observer. T
he observer

can influence the system
 state by som

e input functions, specified by the vector 
, and w

hich are dis-
tributed to the internal nodes in accordance to the scatter m

atrix 
. T

he num
ber of input sig-

nals 
 is typically sm

all, and this m
eans that m

atrix B
 has a sm

all num
ber of colum

ns. O
n the other

hand, the observer is interested in only a few
 outputs, specified by vector 

 w
ith the dim

ension
. T

he relationship betw
een required outputs and the system

 state is given by the gather m
atrix

. A
s a result, w

e have a high-dim
ensional system

 of O
D

E
s in relation to vector 

, the system
state vector, w

hich is governed by a sm
all num

ber of external inputs, and from
 the view

point of an external
observer, contains a sm

all num
ber of relevant outputs. W

e w
ill not describe here the w

ell-know
n system

-
theoretic results of this equation, such as zero state and zero input, but refer the curious reader to the control
theory literature [16].

E
q (9) is a generalization of E

q (4). If m
atrix 

 in E
q (9) represents a single vector, equal to vector 

 of
E

q (1), then vector 
 w

ill contain only one elem
ent, a single input, and w

e can equate it to a step function.
N

ow
 let us say that m

atrix 
 is an identity m

atrix, that is, 
, then w

e have a special case w
. r. t. the

original system
 of O

D
E

s, w
hich w

e call “single input - 
co

m
p

le
te output” or S

IC
O

. 

T
he m

ultiple input case holds w
hen m

atrix 
 has several colum

ns corresponding to m
ulti-load sim

ula-
tions, or w

hen the system
 is consecutively subject to a variety of loads distributed to different nodes. In this

case, each function in vector 
 has a “step” shape lim

ited by the application tim
e of the load (see F

ig. 2).

M
atrix 

 is usually form
ed by picking only those row

s from
 the unit m

atrix w
hich correspond to chosen

nodes. In this case, vector 
y is just a sm

all subset of the state vector 
.

T
he problem

 of m
odel reduction in the case of E

q (9) consists in the reduction of the dim
ension of the

state vector to order 
, w

hile retaining the sam
e num

ber of inputs and outputs
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T
he input vector 

 in E
q (10) is exactly the sam

e as in E
q (9), but the output vector 

 is just som
e

approxim
ation of the original vector 

. T
his transform

ation is sketched in Fig. 3.

T
he quality of the m

odel reduction step of E
q (10) is determ

ined by a norm

(11)

w
hich ideally should hold for any input vector 

. T
he difference betw

een E
q (11) and E

q (7) is that
now

 w
e search for a reduced subspace given by E

q (6) to m
inim

ize the difference betw
een given outputs

only, and not for the w
hole state vector. C

ertainly, if w
e have found a subspace that m

inim
izes E

q (7), then
E

q (11) w
ill be satisfied autom

atically. H
ow

ever, w
e expect that a subspace m

inim
izing E

q (11) w
ill have a

m
uch low

er dim
ension than a subspace m

inim
izing E

q (7).

If m
atrices 

 and 
 both consist of a single colum

n and row
 respectively then the system

 is term
ed S

in-
gle-Input-S

ingle-O
utput (S

IS
O

), otherw
ise it is referred to as M

ultiple-Input-M
ultiple-O

utput (M
IM

O
).

A
 dynam

ic system
 is often considered in the frequency dom

ain, w
hen the Laplace transform

 operator
 is applied to the input and output vectors [13]

, 
(12)

and w
here the relationship betw

een input and output is described by the transfer function

(13)

M
ost of the results in m

odel reduction obtained so far concern the case of a linear system
 of O

D
E

s and
w

here all the m
atrices of E

qs (4) and (9) are com
posed of constant num

bers. In this case, the transfer func-
tion is readily expressed via the system

 m
atrices as

(14)
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3.
S

m
all Linear S

ystem
s

C
ontrol theory has a very strong theoretical result for stable system

s, 
i. e., those system

s for w
hich the real

parts of all the eigenvalues of the system
 m

atrix 
 in E

q (9) are negative. E
ach linear dynam

ic system
 (9)

has 
 so-called H

ankel singular values, 
 (see R

ef. [17] for m
athem

atical details), w
hich can be com

puted
if one solves tw

o Lyapunov equations

(15)

(16)

for the controllability gram
m

ian 
 and observability gram

m
ian 

. T
hen the H

ankel singular values of the
original dynam

ic system
 are equal to the square root of the eigenvalues of the product of the controllability

and observability gram
m

ians

(17)

O
nce these values are know

n, there are a num
ber of m

odel reduction m
ethods w

ith guaranteed error
bounds for the difference betw

een the transfer function of an original 
-dim

ensional system
 and its

reduced 
-dim

ensional system
, as follow

s

(18)

provided that the H
ankel singular values have been sorted in descending order. N

ote that this equation is
valid for arbitrary input functions. T

his m
eans that m

odel reduction based on these m
ethods can be m

ade
fully autom

atic. A
 user just sets an error bound and then, by m

eans of E
q (18), the algorithm

 finds the
sm

allest possible dim
ension of the reduced system

, 
, w

hich satisfies that bound. A
lternatively, a user

specifies the dim
ension of the reduced system

 and the algorithm
 estim

ates the error bound for the reduced
system

.

A
nother practical consequence of this result is that the success of m

odel reduction depends only on the
decay rate of the H

ankel values. F
ig. 4 show

s exam
ples of the behavior of H

ankel values for a few
 typical

applications. If w
e can estim

ate this decay rate for a particular application, this w
ould give us a com

plete
answ

er as to the extent to w
hich w

e could reduce the original system
 [18][19].

T
he S

LIC
O

T
 library im

plem
ents three m

ethods, a B
alanced T

runcation A
pproxim

ation, a S
ingular P

ertur-
bation A

pproxim
ation and the H

ankel-N
orm

 A
pproxim

ation, as w
ell as including a special benchm

ark
problem

 [20][21]. A
ll three m

ethods and their variations are extensively used in control theory and there are
num

erous exam
ples of their applications. H

ow
ever, they are out of the scope of the present review

, since,
due to com

putational reasons, they are lim
ited to relatively sm

all system
s.

T
he tim

e required to solve the Lyapunov equations as w
ell as to perform

 a singular value decom
position

grow
s as the cubic pow

er in the num
ber of equations, or is 

. H
ence, if the system

 order increases
tw

ice, the tim
e required to solve a new

 problem
 w

ill increase about eight tim
es. In other w

ords, even
though the results described above are valid all linear dynam

ic system
s, practically w

e can use them
 for

sm
all order system

s only.

T
he border betw

een sm
all and large system

s depends on the com
puter pow

er available and of course it
steadily grow

s. A
ccording to R

ef [20], the m
odel reduction of a random

ly generated linear system
 of order

512 takes 76 seconds on a 400 M
H

z P
entium

 II processor P
C

. S
ince processors now

 prom
ise 1.2 G

H
z clock

speed, this enables us to define current sm
all system

s as those w
ith state vector dim

ensions in the range of
1000 to 2000.

4.
Introduction to K

rylov S
ubspaces

It happens that, in m
any cases, very good candidates for the required low

-order subspace of E
q (6) are

K
rylov subspaces, and alm

ost all m
odern m

odel reduction m
ethods for large-scale system

s are based on

A
n

σ
i

A
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P
A

T
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+
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B
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⋅
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A
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σ
i

λ
i

P
Q⋅

(
)

=

n
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G
Ĝ

–
∞

2
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k
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+
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σ
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+
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(
)

≤

k

O
n

3
(

)

them
, one w

ay or another. It should be noted that those iterative m
ethods for solving a system

 of linear
equations that are based on K

rylov subspaces have been included in the list of the ten top algorithm
s of the

20th century [11].

A
 K

rylov subspace of 
-th dim

ension of the m
atrix 

 and vector 
 is defined as a sub-

space spanned by the original vector 
 and the vectors produced by consecutive m

ultiplication of the
m

atrix 
 to this vector up to 

 tim
es, or

(19)

T
he resulting vectors form

 a basis for 
-dim

ensional subspace. H
ow

ever, if w
e com

pute them
 directly as

w
ritten, then, because of rounding errors, they w

ould becom
e com

putationally linearly dependent even for
relatively sm

all 
.

4.1
A

rnoldi and Lanczos algorithm
s to build the K

rylov subspace
A

 num
erically stable procedure for building a K

rylov subspace (19) is an A
rnoldi process [11][22][23]. It

generates 
an 

orthonorm
al 

basis 
 

for 
the 

K
rylov 

subspace 
and 

a 
H

essenberg 
m

atrix,
, related to the original m

atrix as follow
s

(20)

T
he H

essenberg m
atrix for the A

rnoldi process is m
ade of an upper tridiagonal m

atrix plus one diagonal
below

 the m
ain diagonal. It can be considered as an orthogonal projection of the m

atrix 
 onto the given

K
rylov subspace.

T
he m

ain disadvantage of the A
rnoldi m

ethod is that each new
 A

rnoldi vector should be orthogonal to all
previously generated vectors. T

his m
eans that the com

putational cost grow
s disproportionately w

ith the
dim

ension of the subspace. T
he current alternative is to use a Lanczos algorithm

, w
here the subspace (19)

is considered as a right K
rylov subspace. In addition to it, and in parallel, the left K

rylov subspace

F
ig. 4

D
e

ca
y o

f n
o

rm
a

lize
d

 H
a

n
ke

l sin
g

u
la

r va
lu

e
s fo

r fo
u

r typ
ica

l a
p

p
lica

tio
n

s (fro
m

 R
e

f. [7
]). W

e
 exp

e
ct

th
e

se
 cu

rve
s to

 a
lso

 b
e

 typ
ica

l fo
r M

E
M

S
.

k
A

ℜ
n

ℜ
n

×
∈

v
ℜ

n
∈

v
A

k
1

–K
k r

A
v,

(
)

span
v

A
v⋅

…
A

k
1

–
v⋅

,
,

,
{

}
=

k

k

X
ℜ

n
ℜ

k
×

∈
H

A
ℜ

k
ℜ

k
×

∈

X
*A

X
H

A
=

A



(21)

is also generated, w
here the vector 

 can be equal or not to vector 
, depending on the applications, and

 is the conjugate transpose of the m
atrix 

.

T
he Lanczos algorithm

 produces a pair of biorthogonal bases for subspaces (19) and (21) contained in the
m

atrices 
 and 

 such that

(22)

and a H
essenberg m

atrix 
 that is in tridiagonal form

. T
his m

eans that, for any iteration of the algorithm
,

it is necessary to deal w
ith just tw

o previously generated vectors. T
he L

anczos H
essenberg m

atrix is related
to the original m

atrix as

(23)

and can be considered to be an oblique projection of 
 onto the subspace (19) w

hile rem
aining perpendic-

ular to subspace (21). Fig. 5 illustrates the orthogonal and oblique projections of a vector. B
ecause the

L
anczos algorithm

 is based on three-term
 recurrences, it is faster for large 

. H
ow

ever, it is com
putation-

ally less stable than the A
rnoldi process: a typical trade-off of accuracy vs. efficiency. T

he L
anczos and

A
rnoldi algorithm

s are m
athem

atically equivalent if the m
atrix 

 is sym
m

etric and the starting vectors 
and 

 are sam
e, in other w

ords, w
hen the K

rylov subspaces (19) and (21) are equivalent.

Instead of just one starting vector 
, one can take a num

ber of starting vectors expressed by the m
atrix 

.
T

his leads to a generalization of the A
rnoldi and Lanzcos algorithm

s to the so-called block-A
rnoldi and

block-Lanzcos algorithm
s [24][25]. H

ere w
e define the appropriate right and left K

rylov subspaces as

(24)

(25)
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O
ne difficulty w

ith the block-K
rylov subspaces is that it is m

ore difficult to predict the num
ber of m

ultipli-
cations in E

q (24) and (25) in order to generate a 
-dim

ensional subspace. Typically, 
 is equal to the quo-

tient of 
 by the num

ber of colum
ns of the m

atrices 
 or 

, but the exact answ
er depends on the existence

of linearly dependent vectors in (24) and (25).

4.2
C

om
puting the inverse of the system

 m
atrix

O
ne com

putational advantage of all K
rylov subspace m

ethods is in their iterative nature, 
i.e., to perform

them
 a user only needs to provide consecutive m

atrix by vector m
ultiplications. T

his allow
s us to exploit

the sparse form
 of the m

atrices, and to create fast application-specific im
plem

entations for the required
 product. T

he driver algorithm
s do not have to know

 the details how
 m

atrix 
 is stored in the com

-
puter system

.

F
or m

odel reduction problem
s, the K

rylov subspace (19) is actually based on the inverse of the system
m

atrix 
. R

ecalling E
q (5), this m

eans that for both the A
rnoldi and Lanzcos processes it is necessary to

com
pute the product

(26)

W
e now

 discuss, using this exam
ple, the advantage of the iterative structure of the K

rylov subspace m
eth-

ods. and 
 are large-dim

ensional sparse m
atrices, but the product 

 m
ight be a dense m

atrix, and the
com

putational cost to com
pute this product is very high due to the presence of the m

atrix inverse. H
ence its

direct com
putation is unw

ise. It is m
uch m

ore efficient to com
pute the product 

. F
irst, before the

procedure, one perform
s an LU

-decom
position of 

 (or equivalently, a C
holesky decom

position for a pos-
itive definite m

atrix, see [23]), w
hich can take into account the sparse structure of 

:

(27)

w
here 

 and 
 are low

er and upper triangular m
atrices, respectively. T

his is costly, but w
e w

ill require 
and 

 m
any tim

es. T
hen, each m

ultiplication 
 is perform

ed in three steps:

1) 
 is m

ultiplied by 
, 

. 
 is sparse and so this is a potentially a fast operation.

2) 
a) T

he linear equations 
 are forw

ard solved, so that 
. Since 

 is low
er tri-

angular this is again a fast operation.
b) T

he backw
ard solution of the linear equations 

 then gives us the desired product
. A

gain, since 
 is upper triangular, this is a fast operation.

O
nce again, the above speedup is possible only because higher level algorithm

s do not need to have
access to the full m

atrix 
; otherw

ise w
e w

ould have no option but to com
pute it.

W
hen the dim

ension of 
 grow

s large enough LU
-decom

position is no longer useful because it takes too
m

uch tim
e. H

ence, the second step above changes to

2) 
T

he linear equations 
 are solved by an iterative m

ethod, 
. If lucky, an iter-

ative m
ethod can be reasonably fast for a particular 

 m
atrix.

Iterative m
ethods for the solution of a system

 of linear equations are also based on K
rylov subspaces, and

it is im
portant not to confuse them

 w
ith those review

ed in the present paper. T
he m

odified step above
im

plies that, for any com
putation of the subsequent K

rylov vector, it is necessary to use second level itera-
tions to solve the linear system

 of equations. In addition to books [22] and [23], an excellent object oriented
tem

plate-oriented review
 of K

rylov-based m
ethods for the solution of linear system

s can be found in [26].
It should be noted that the success of iterative K

rylov m
ethods for a linear solve step depends on the struc-

ture of the m
atrix, and for the general case, their effective use requires finding a preconditioner, another

m
atrix 

, w
hich transform

s the original linear system
 to an equivalent 

, but w
hich has
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superior convergence properties. F
or a discussion on the im

portance of preconditioning for solving linear
system

s that are generated through the discretization of P
D

E
s by the finite elem

ent m
ethod, refer to R

ef.
[27].

5.
Large Linear S

ystem
s

A
s w

as already m
entioned, algorithm

 tim
e com

plexity lim
itations do not allow

 us to directly em
ploy con-

trol theory algorithm
s for large-scale system

s. A
s a result, m

ost of the practical w
ork in m

odel reduction of
large linear dynam

ic system
s have been tied to P

adé approxim
ants of the transfer function (14), and w

e
start the present section w

ith them
. T

hese m
ethods are com

putationally feasible but, on the other hand, they
do not provide a global error estim

ate. R
ecently, there have been considerable efforts to find com

putation-
ally effective strategies in order to apply m

ethods based on H
ankel singular values to large-scale system

s,
and w

e briefly review
 them

 in the second part of this section.

5.1
A

pproxim
ating a T

ransfer F
unction by P

adé and P
adé-type A

pproxim
ants

F
or the case of S

ingle-Input-S
ingle-O

utput (S
IS

O
) system

s, w
hen m

atrices 
 and 

 both are com
posed

of a single colum
n and row

 accordingly, the transfer m
atrix (14) is a scalar rational function w

hich can
alw

ays be expressed in the factored form
 as 

(28)

w
here 

 and 
 are zeros and poles of the transfer function and 

 is a constant. In the M
ultiple-Input-M

ul-
tiple-O

utput (M
IM

O
) case a transfer m

atrix is of dim
ension p by m

, each elem
ent of w

hich being a function
of the form

 of E
q (28).

T
he idea of P

adé [28] and P
adé-type [29] approxim

ants is to find a rational function of sm
aller dim

ension
, 

, w
hich retains the essential behavior of the large-dim

ensional original rational function. T
his is

form
ulated in term

s of m
om

ent m
atching in the expansion of the transfer functions around som

e given
num

ber 
 (in m

ost applications 
),

(29)

that is,

 for 
(30)

Padé approxim
ants m

atch the m
axim

um
 num

ber of m
om

ents, 
, w

hile Padé-type approxim
ants

m
atch first 

 m
om

ents. T
his is easily generalized to the m

ultiple input - m
ultiple output (M

IM
O

) sys-
tem

, w
here all m

om
ents w

ill be 
 m

atrices.

It happens that the A
rnoldi process for the right K

rylov subspace

(31)

produces such m
atrices 

 and 
 such that the reduced system

, 
, 

(32)

im
plicitly m

atches the first 
 m

om
ents in E

q (29), that is, the A
rnoldi process im

plicitly produces a Padé-
type approxim

ant of the original transfer function (14). O
n the other hand, if one perform

s L
anczos algo-

rithm
s for the right (31) and left K

rylov subspaces
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m
atrices 

, 
 and 

 produce the reduce system

, 
, 

(34)

w
hich w

ill m
atch 2k m

om
ents of the original dynam

ic system
 [24][25][30][31]. N

ote that E
qs (32) and (34)

greatly sim
plify for the case of an expansion about 

, and that there are com
putationally m

ore effec-
tive form

ulas for producing the reduced m
atrices 

 and 
.

T
he Lanczos algorithm

 produces a reduced system
 closer to the original one, because the num

ber of
m

om
ents m

atched here is tw
ice that of the A

rnoldi process. T
his has a sim

ple explanation. M
odel reduction

by the A
rnoldi process does not take into account m

atrix 
 at all, w

hile m
odel reduction by m

eans of the
Lanczos algorithm

 is m
ade by an oblique projection on the right K

rylov subspace (31) that takes into
account the left K

rylov subspace (33).

S
till, both approaches are based on m

om
ent m

atching and they are by nature local, in the sense that, in
general, they m

ake a good approxim
ation of the transfer function (14) near the expansion point 

 only.
T

his can be im
proved by m

ulti-point expansion, i.e., expanding the transfer function (14) about several
points 

 and requiring the reduced transfer function to m
atch the first m

om
ents at all expansion points.

T
his idea w

as im
plem

ented in the so-called R
ational K

rylov m
ethod [31][32], w

here the A
rnoldi or Lanc-

zos algorithm
s w

ere applied to the union of the K
rylov subspaces (31) and (33) for different values of 

.
T

he m
ain m

ethodological challenge here is to decide how
 to choose the expansion points, and to determ

ine
how

 m
any are needed. C

om
putationally this adds an additional load. If one uses LU

-decom
position for the

inverse of the system
 m

atrices (see S
ection 4.2), then in this case it is necessary to perform

 an LU
-decom

-
position for each value of 

.

T
he original dynam

ic system
 can be stable, that is, w

hen tim
e goes to infinity the values of 

 rem
ain finite

(bounded), and passive, w
hich is to say, the system

 does not generate energy. If so, then it is im
portant,

especially in electrical circuit sim
ulations, that the reduced system

 also possesses these properties. U
nfortu-

nately, both the “out-of-the-box” A
rnoldi and Lanczos algorithm

s do not guarantee this, and special
attention should be paid to preserve the properties of the original dynam

ical system
. It happens that the

A
rnoldi process is m

athem
atically m

ore sim
ple than Lanczos algorithm

 (this is stressed by their nam
es,

process and algorithm
s, respectively). P

robably for this reason, engineers often choose the A
rnoldi process:

the coordinate transform
ed A

rnoldi [33] for stable m
odel reduction, and the provably passive m

odel reduc-
tion m

ethod “block A
rnoldi plus congruent transform

” or (P
R

IM
A

) of R
ef. [34]. O

n the other hand, m
athe-

m
aticians still bet on the Lanczos algorithm

s [24][25][35][36], because, as w
as m

entioned above, it takes
into account the observability m

atrix 
 and it m

atches tw
ice the num

ber of m
om

ents of the A
rnoldi pro-

cess. T
hey seem

 to prefer, w
hile preserving the properties of the original dynam

ic system
, to m

atch as
m

any m
om

ents as possible so as to obtain the m
ost accurate representation for the sam

e dim
ension 

 of the
reduced m

odel. It is also w
orth noting that, even though w

hen som
e algorithm

 provably produces a passive
reduced m

odel, this does not m
ean that its com

puter im
plem

entation w
ill really produce a passive m

odel in
practice, m

ainly because of the inevitable num
erical rounding errors [24].

N
ow

 let us return to the original case of m
odel reduction for system

s (4) to (8). F
rom

 a control theory
view

point w
e term

 it S
ingle-Input-C

om
plete-O

utput or S
IC

O
. It so happens that if system

 (4) is obtained
during the discretization of a diffusion-convection partial differential equation, then the K

rylov subspace
(31) w

ith 
 is a very good choice for the low

er dim
ensional subspace in E

q (6) [8][9][37]-[43]. In
this case, the m

odel reduction step (8) can be view
ed as an approxim

ate solution of the original system
 (4),

because it is possible to recover the solution for all of the original unknow
ns by m

eans of E
q (6). T

his w
ork
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has been superseded by the use of a K
rylov subspace (31) to approxim

ate the m
atrix exponential [10][23],

but m
athem

atically this is identical w
ith a P

adé-type approxim
ant (32) w

hen the m
atrix 

 is just discarded.

W
e next list exam

ples of the papers in w
hich P

adé and P
adé-type approxim

ants via K
rylov subspace

m
ethods have been used for the m

odel reduction of a linear system
 (9). T

he papers com
e from

 several dis-
tinct com

m
unities:

•
T

he largest com
m

unity com
es from

 electrical engineering w
here m

odel reduction is m
ostly em

ployed to
deal w

ith the so-called m
icrochip interconnect problem

 [44][45][46]: M
ixed surface volum

e for 3D
interconnect [47], Lossy m

ulticonductor transm
ission lines [48], 3D

 interconnect and packaging based
on an alternate P

artial E
lem

ent E
quivalent C

ircuit (P
E

E
C

) form
ulation [49], C

oupled lossy transm
ission

lines [50], M
agetoquasistatic analysis for packaging parasitics w

ith skin effect [51], P
E

E
C

 m
odel of an

electrom
agnetic problem

 [52], E
lectrom

agnetic devices m
odeled by linearized M

axw
ell equations [53],

F
ull-w

ave electrom
agnetic analyses [54], and E

lectrom
agnetic w

ave propagation by the finite elem
ent

m
ethod (F

E
M

) [55]. T
he actual num

ber of publications on m
odel reduction here is m

uch greater.
•

T
he ideas from

 electrical engineers have been used for the m
odel reduction of w

ave-propagation-like
problem

s: T
he H

elm
holtz equation for exterior structural acoustics by F

E
M

 [56], N
eutron noise for

nuclear reactor by the finite difference m
ethod [57], A

eroelastic analyses of turbom
achines [58].

•
A

nother com
m

unity solves the advection-diffusion P
D

E
, w

hich arises in a variety of engineering disci-
plines. T

hey m
ostly deal w

ith the single-input-com
plete-output (S

IC
O

) case discussed above. H
ere,

m
odel reduction is at the beginning stage if w

e com
pare the num

ber of papers in w
hich m

odel reduction
is used to the total num

ber of papers on the solution of advection-diffusion P
D

E
s: A

dvection dispersion
equation for groundw

ater flow
 [37][38], M

ass transport in hydrogeologic environm
ents [39], P

hoton dif-
fusion (optical tom

ography) problem
 [40], R

adionuclide decay-chain transport in porous m
edia [41],

G
roundw

ater flow
 in dual-porosity m

edia [42], R
adionuclide decay chain transport in dual-porosity

m
edia [43], G

roundw
ater flow

 in discretely fractured porous m
edia [8], and D

iffusion and convection
dom

inated flow
 [9].

•
F

inally, w
e have the M

E
M

S
 com

m
unity w

hich has just recently started to exploit the m
odern opportuni-

ties of m
odel reduction: E

lectrostatic gap-closing actuator [59], Linearized m
odel for a m

icrom
irror

[60], and the C
om

b-drive resonator [61]. It is interesting to note that the M
E

M
S

 com
m

unity appears to
have learned about m

odel reduction from
 the electrical engineers and is not aw

are of w
ork on the m

odel
reduction of advection-diffusion P

D
E

s, even though this body of w
ork is m

uch closer to typical M
E

M
S

sim
ulations.

5.2
A

pproxim
ating Lyapunov E

quations
U

nfortunately, P
adé and P

adé-type approxim
ants do not have global error estim

ates, sim
ilar to E

q (18),
and this drives m

athem
aticians to develop com

putationally effective strategies for large dim
ensional sys-

tem
s based on the m

ethods described in S
ection 3. In [7] these approaches are referred to as S

V
D

-K
rylov,

and in [62] there is a good overview
 of existing strategies.

T
he optim

al m
inim

al reduction m
ethods for linear system

s com
prise tw

o com
putationally expensive

steps: solution of Lyapunov equations (15) and (16) for the controllability and observability gram
m

ians,
and then eigenvalue-type decom

position of the product of tw
o gram

m
ians, E

q (17). T
he com

putational tim
e

for both steps, even using the m
ost advanced com

putational m
ethods [63], grow

s as the cube of the system
dim

ension.

A
 general idea to decrease the com

putational tim
e is to change the exact gram

m
ians to their low

-rank
approxim

ations. It happens that it is possible if the num
ber of inputs and outputs are m

uch less than the
dim

ension of the state vector, 
 and 

, and this is the case for the m
ost im

portant practical applica-
tions. A

s a result, it is possible to solve Lyapunov equations for low
-rank gram

m
ian approxim

ations m
uch

faster than for exact gram
m

ians [64][65][66][67]. F
or the case of a dense m

atrix 
, the com

putational tim
e

is already proportional to the square of the system
 dim

ension 
, and it m

ay be linearly proportional to 
for the case of a sparse m

atrix 
. A

lso, the advantage of these m
ethods is that they can be form

ulated in
term

s of m
atrix-vector products only, as for the K

rylov subspace m
ethods. T

he second step, balancing, w
ith

C

m
n

«
p

n
«

A
n

n
A

the use of low
-rank gram

m
ians, is also m

uch faster because there are special algorithm
s that can take this

into account [62][67].

A
 very sim

ple case of m
odel reduction arises w

hen the inputs are the sam
e as the outputs, and m

atrix 
 is

sym
m

etric. N
ote, that if m

atrices 
 and 

 in E
q (1) are sym

m
etric and 

 is positive definite, then by an
appropriate coordinate transform

ation one can obtain E
q (4) w

ith a sym
m

etric m
atrix 

 [33]. In this case,
the gram

m
ians are equal to each other because E

qs (15) and (16) becom
e the sam

e: then it is necessary to
solve just a single Lyapunov equation and there is no need to perform

 balancing. A
nother approach is to

use, instead of tw
o Lyapunov equations (15) and (16), the S

ylvester equation [68]

(35)

to find the so-called cross-gram
m

ian 
. It happens that in the case of a linear dynam

ic system
 w

ith a sym
-

m
etric transfer function, the H

ankel singular values are equal to the eigenvalues of the cross-gram
m

ian, and
here there is also no need for balancing. T

his is alw
ays true for any SISO

 system
, because in this case the

transfer function is a scalar. In the M
IM

O
 case, one can use a transform

ation described in R
ef [68] in order

to convert any linear dynam
ic system

 to one w
ith a sym

m
etric transfer function.

S
om

e m
ethods for m

odel reduction based on solving large dim
ensional Lyapunov equations are im

ple-
m

ented in the library LY
P

A
C

K
 [69] (it requires M

AT
LA

B
). A

s m
entioned in R

ef [69], Lyapunov equations
of order m

ore than 12000 w
ere solved by LY

P
A

C
K

 w
ithin a few

 hours on a regular w
orkstation.

6.
N

onlinear S
ystem

s
N

ow
 let us allow

 the elem
ents of the system

 m
atrices to depend on the state vector 

 and on the tim
e. If

they depend explicitly on tim
e only, then w

e have a special case of a tim
e-varying system

, and there are
exam

ples of extending K
rylov subspace m

odel reduction m
ethods to this case [54][70].

N
ote that, even w

hen system
 m

atrices depend on 
, E

q (4) is a special case of a general non-linear system

(36)

A
n evident solution for m

odel reduction is to split the w
hole system

 into nonlinear and linear parts and then
to apply the m

odel reduction to the linear subparts [24], thus reducing the total num
ber of unknow

ns in the
state vector. A

nother popular alternative is to linearize the non-linear system
 around an operating point and

then to m
ake m

odel reduction for the resulting linear system
. D

efinitely, the answ
er as to w

hether this is
possible depends on the application in question. T

here is an interesting exam
ple in R

efs [71][72], w
here, in

order to im
prove the precision of the linearization process, the authors have included quadratic term

s in the
expansion.

T
here are som

e m
ethods for m

odel reduction of nonlinear system
s applicable to sm

all-dim
ensional prob-

lem
s [73][74], and som

e special cases w
here it is possible to find particular approaches w

hich allow
 us to

use ideas from
 the previous section [59][75][76]. N

evertheless, to our know
ledge, for the general case of

m
odel reduction of large nonlinear system

s, there appears to be one approach only, w
hich w

e consider in
the next section.

6.1
P

roper O
rthogonal D

ecom
position

F
or system

s w
ith strong nonlinear effects, linearization is im

possible because a linearized system
 cannot

capture the com
plexity of the original phenom

ena. W
e rem

ind ourselves that nonlinear system
s m

ay show
instabilities such as snap-through, and bifurcations, and ultim

ately the onset of chaotic behaviour, all of
w

hich should be represented in the reduced system
. In this case, in order to find an appropriate low

-dim
en-

sional subspace (6), one can use results of the full order sim
ulation of the original dynam

ic system
 (4), and

this is im
plem

ented w
ithin the proper orthogonal decom

position (P
O

D
; another popular nam

e is K
arhunen-

A
E

F
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A

A
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Loève decom
position) [77]. T

his is the m
ain difference w

. r. t. linear system
s, w

here the m
odel reduction

process can be based on the system
 m

atrices w
ithout perform

ing a full order sim
ulation.

Let us consider a slightly sim
plified procedure for a finite-dim

ensional system
. T

he first step is to perform
one or m

ore sim
ulations and to collect a series of so-called “snapshots”

, 
(37)

w
here m

atrix 
 is com

posed from
 

 state vectors 
, corresponding to different tim

es of sim
ulations of

E
q (4). T

his is the m
ost crucial step during PO

D
 because the reduced basis w

ill be obtained from
 m

atrix 
only, and if it does not give a good representation of the w

hole ensem
ble of possible values of 

, then the
generated low

-dim
ensional basis w

ill lead to a poor quality of approxim
ation. If, for linear system

s, it w
as

possible to perform
 m

odel reduction for any input functions, for non-linear system
s it is necessary to

choose the m
ost typical input functions, and to perform

 sim
ulations w

ith them
. U

nfortunately, there exist
alm

ost no form
al rules as to how

 to choose the num
ber “snapshots” to collect and at w

hat tim
es they should

be taken. H
ence, PO

D
 is m

ore of an “art”, and typically, for any new
 nonlinear system

, it is necessary to
m

ake a special investigation in this respect.

N
evertheless, the follow

ing P
O

D
 steps are com

pletely form
al. F

or a given “snapshot” m
atrix 

 it is for-
m

ally possible to find a low
 rank approxim

ation w
ithin a given error m

argin by m
eans of a S

ingular Value
D

ecom
position (S

V
D

) [7][23]

, 
, 

, 
(38)

w
here 

 is a diagonal m
atrix of singular values, 

 is a m
atrix of left singular vec-

tors, and 
 is a m

atrix of right singular vectors. Provided the singular values of 
 rapidly decay

w
e can take only a sm

all num
ber singular vectors, 

, corresponding to the largest singular values, and
this gives us a low

-rank approxim
ation of m

atrix 
 of the form

(39)

w
here the reduced m

atrices are form
ed from

 the full m
atrix by leaving only 

 dom
inant vectors. E

q (39)
show

s that all observations are effectively described by a sm
all num

ber of vectors 
, w

hich gives a
reduced basis on w

hich to project the original differential equation:

(40)

T
he transition from

 E
q (37) to (39) can be m

ade com
pletely autom

atic because according to S
V

D
-theory

there is an error estim
ate based on singular values w

ith the norm

(41)

and E
q (39) actually reduces this norm

 to a m
inim

um
. T

he problem
 is that it is difficult to predict, a priori,

w
hether this error estim

ate can be used for the transition from
 E

q (4) to (8), because this already strongly
depends on the quality of the generated “snapshots”, that is, w

hether they are representative or not.

T
he final step is to project original non-linear equation onto the low

-dim
ensional basis. F

or E
q (4), w

hen
the elem

ents of 
 and 

 depend on 
, w

e can w
rite

 and 
(42)

and, for the general case of E
q (36), the reduced m

odel becom
es
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T
here is a hidden com

putational problem
 w

ith E
q (42), m

om
entarily ignoring E

q (43), w
hich is, how

 to
com

pute the reduced system
 m

atrices. M
atrix 

 contains som
e functions of 

 and hence E
q (42) should be

com
puted by m

eans of sym
bolic m

anipulations. T
his is practically unfeasible. In the general case one m

ay
only com

pute the right sides in (42) for each tim
e step during the sim

ulation of the reduced m
odel and this

then constitutes the m
ain com

putational cost. F
or exam

ple, in R
ef. [78], the size of the state vector has been

reduced from
 21540 to 15 (about 1500 tim

es) but, because of the above reason, the tim
e of the sim

ulation
w

as reduced only by a factor of six.

P
O

D
 has been used extensively in fluid dynam

ics in order to m
odel turbulence [77]. R

ecently, it has been
em

ployed in a variety of disciplines tied w
ith nonlinear dynam

ics: R
apid therm

al processing system
s [79],

C
ontrol of a solid fuel ignition [80], C

hem
ical vapor deposition [81][82] and other D

istributed reacting sys-
tem

s [83]-[86], C
ascading failures in pow

er system
s [87], F

eedback control of system
s governed by a non-

linear 
P

D
E

 
[88]-[90], 

and 
various 

M
echanical 

engineering 
problem

s 
[78],[91]-[93]. 

T
he 

M
E

M
S

com
m

unity has also started to em
ploy this technique [71][94][95].

T
he S

V
D

 decom
position of a m

atrix is a com
putationally dem

anding m
ethod: the tim

e grow
s as the cube

of the m
atrix dim

ension. T
his m

eans that w
hen the dim

ension of m
atrix 

 grow
s w

e m
ight not have

enough com
putational resources in order to m

ake the decom
position (38). It happens that again iterative

m
ethods based on the K

rylov subspaces can help to find the dom
inant singular vectors w

ithout perform
ing

the full S
V

D
 decom

position [96][97] and thus keeping com
putational tim

e w
ithin reasonable lim

its.

T
he original P

O
D

 procedure does not take into account the inform
ation about required system

 inputs and
outputs, and this lim

its its applicability in system
 sim

ulation. R
ecently, the m

ethod has been generalized
[98][99] in order to take into account ideas from

 the linear control theory. T
he generalization is based on

the introduction of “em
pirical gram

m
ians” w

hich are com
puted based on “em

pirical snapshots”. T
his

opens new
 perspectives for applications of P

O
D

 to nonlinear m
odel reduction and hopefully in the future

w
e w

ill see further developm
ent of these ideas.

7.
C

onclusion
Let us sum

m
arize the current status of autom

atic m
odel order reduction. T

he situation is reasonably good
for large-scale linear dynam

ic tim
e-invariant system

s. T
he m

om
ent m

atching m
ethods for m

odel reduction
based on the A

rnoldi and Lanczos algorithm
s are in a m

ature state. T
hey scale w

ell w
ith the size of the sys-

tem
, their behavior is fairly predictable, and they are easily im

plem
ented in alm

ost any com
putational envi-

ronm
ent. A

s w
as already m

entioned, the A
rnoldi process is m

ore com
putationally stable and one can

im
plem

ent it m
uch easier than the Lanczos algorithm

. O
n the other hand, the latter can m

atch m
ore

m
om

ents and thus provides a better approxim
ation of the original system

. A
s a result, the A

rnoldi process is
the best choice for those w

ho w
ould like to im

plem
ent m

om
ent m

atching m
ethods fast and from

 scratch,
and it is better to obtain the im

plem
entation of the Lanczos algorithm

 from
 professional sources.

A
 typical question w

ith m
om

ent m
atching techniques is: w

hen to stop m
odel reduction. A

 good strategy is
provided in R

ef. [52], w
here a local error estim

ate has been suggested for m
odel reduction based on the

Lanczos algorithm
. F

irst, it is necessary to estim
ate a range of frequencies in w

hich the approxim
ation of

the transfer function is required. It is possible to set 
 to an expansion point in the m

iddle of this range and
then to use the local error estim

ate on the border of this range as a m
onitor as to w

hen to stop the m
odel

reduction process, because the approxim
ation error typically increases faster the further on is from

 the
expansion point. T

his procedure still does not give a global error estim
ate as the balanced truncation

approxim
ation does, but for m

ost engineering purposes this should be good enough.

A
nother problem

 is that P
adé and P

adé-type approxim
ants are local by their nature, and they m

ight be not
optim

al if one w
ould like to obtain a good approxim

ation of the transfer function over a w
ide range of 

,
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that is, the dim
ension of the reduced m

odel m
ight then be too large. H

ere one can think of a R
ational K

ry-
lov approxim

ation or to em
ploy a tw

o-step strategy suggested in R
ef. [51]. F

irst one com
putes a m

edium
order m

odel by m
eans of m

om
ent m

atching techniques around a chosen 
 (for m

any cases outside of elec-
trical engineering 

 seem
s to be a satisfying choice) and then to em

ploy a truncated balanced approx-
im

ation to reduce the interm
ediate m

odel as m
uch as possible.

T
he developm

ent of m
odel reduction based on the solution of Lyapunov equations is the next logical step

for a large linear system
. It is quite evident that in the few

 next years w
e w

ill see m
ore practical exam

ples in
this area, and as the experience of m

athem
aticians grow

s one can expect m
ore practical outcom

es for engi-
neers. T

his w
ill bring us truly autom

atic m
odel reduction, just as w

e have for the case of sm
all linear sys-

tem
s right now

, provided the m
inim

um
 over the norm

 (18) is enough for the application. Let us stress this
w

ith the exam
ple from

 R
ef. [100]. T

he norm
 (18) m

easures the absolute error over the w
hole frequency

range, and if the transfer function changes by m
any orders of m

agnitude, then the balanced truncation
approxim

ation could describe the transfer function behavior quite w
ell if w

e consider it from
 the view

point
of the absolute error, but not that w

ell if w
e consider the relative error.

T
he situation w

ith nonlinear system
s is quite different, and hum

an intervention in som
e form

 appears to
be inevitable here. F

irst, it is necessary to see if a problem
 in question can be handled by

•
linearization,

•
splitting to linear and non-linear subparts,

•
som

e special effective case for a particular nonlinear dynam
ic system

.

If not then the choice is clearly PO
D

, w
here the m

ain questions are: how
 m

any “snapshots” should be gen-
erated, and how

 often. A
lternatives here are to follow

 the exam
ple of a sim

ilar nonlinear system
, or to m

ake
a special investigation in order to learn the special behaviour and requirem

ents of the system
. N

evertheless,
the PO

D
 suggests quite an appropriate fram

ew
ork for general nonlinear m

odel reduction because it is pos-
sible to state that hum

an intervention here is lim
ited to decision m

aking. A
fter a researcher has decided on

how
 to obtain m

atrix (37), all other PO
D

 steps can be m
ade fully autom

atic. PO
D

 is especially attractive
for those applications w

here it is possible to obtain a reduced system
 m

atrix (42) in a closed form
, that is,

w
hen the governing equations can be directly projected to the reduced basis.

8.
O

n-line resources
T

he advent of the internet has m
ade accessible a w

ide variety of inform
ational resources. T

here are good
slide show

s on m
odel reduction w

ith illustrations and exam
ples [101][102]. B

elow
 there are hom

epages of
scientists involved in m

odel reduction, in w
hich one can find additional resources:

•
A

. C
. A

ntoulas - http://w
w

w
-ece.rice.edu/~

aca/
•

P. B
enner - http://w

w
w

.m
ath.uni-brem

en.de/~
benner/

•
D

. B
oley - http://w

w
w

-users.cs.um
n.edu/~

boley/
•

R
. W

. F
reund - http://cm

.bell-labs.com
/w

ho/freund/
•

B
. B

. K
ing - http://w

w
w

.m
ath.vt.edu/people/bbking/

•
J. E

. M
arsden - http://w

w
w

.cds.caltech.edu/~
m

arsden/
•

S
. Lall - http://elem

ent.stanford.edu/~
lall/

•
T. P

enzl - http://w
w

w
.m

athem
atik.tu-chem

nitz.de/in_m
em

oriam
/penzl/

•
Y. S

aad - http://w
w

w
-users.cs.um

n.edu/~
saad/

•
P. Van D

ooren - http://w
w

w
.auto.ucl.ac.be/~

vdooren/
•

A
. Varga - http://w

w
w

-er.df.op.dlr.de/staff/varga/

A
lso, there are a num

ber of theses, available on the internet, w
hich provide a good introduction in a partic-

ular field: A
daptive m

eshing [103], K
rylov subspaces [104], C

ontrol theory [105], M
om

ent m
atching

m
odel reduction [106][107], SV

D
-K

rylov m
odel reduction [108], and PO

D
 [109][110].

s
o

s
o

0
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