

 the scope of our review.

 work. However, the model reduction problem they are trying to solve is absolutely the same if we consider devices. It is therefore not surprising that these two engineering communities do not follow each other's

 engineering level. Our review complements Ref. [7] (where automatic model reduction is considered mathematically) on the ideas and common MEMS engineering practice, and the aim of the present review is to start to fill this gap.

 situation. Certainly, without experience and intuition, we do not recommend their use.
be referred to as non-automatic model reduction methods, and there appears to be no way to improve this duces a smaller (and hence reduced order) yet equivalent system of ODEs. -oud puв sв

 arrows represent translations between descriptions: 1) Lumping is done by hand, either as a circuit

8! d

Evgenii B. Rudnyi and Jan G. Korvink IMTEK-Institute for Microsystem Technology

korvink@imtek.uni-freiburg.de
www.imtek.uni-freiburg.de/simulation
 The goal of MEMS computer-aided design and simulation is to accurately and efficiently represent the
behavior of the system in question. This allows technologists to develop a better understanding of the sys behavior of the system in question. This allows technologists to develop a better understanding of the sys
tem, and as a result, to quickly choose an optimal design. A hugely successful example of the application of tem, and as a result, to quickly choose an optimal design. A hugely successful example of the application of
computer-aided design (CAD) is in the simulation of electrical integrated circuits, for which the simulator's computer-aided design (CAD) is in the simulation of electrical integrated circuits, for which the simulator's
output is almost the same as that produced by a real circuit prototype. This drives MEMS-designers to cre-
ate similar techniques for MEMS simulations. It so happens that electrical circuit and MEMS simulations are quite different in nature (see, for example, the discussion in Ref. [1]). A circuit is rather accurately described by lumped elements such as discrete resistors, capacitors, inductors, transistors and so on. The transient response of the circuit can be immedi-
ately written as a system of ordinary differential equations (ODEs) with the system's dimension of the ately written as a system of ordinary differential equations (ODEs) with the system's dimension of the
order of the number of nodes connecting lumped elements in the circuit. On the other hand, the governing partial differential equations (PDEs) for MEMS-devices do not always lend themselves to intuitive lumping as ODEs, and hence are solved numerically by first spatially semi-discretising them by means of finite ele-
 tial equations, meshes and models are shown in Fig. 1.
Recent advances in computer power allows us to solve the most striking examples here being car crash simulations (see, for example, Ref. [2]). Nevertheless, thi typically requires parallel computations (see the benchmark report in Ref. [3]) which increases the cost of simulation drastically, and as a result, limits simulation applicability considerably.
In order to facilitate computations, engineers often simplify the original rigorously derived governing equations or, instead, use simple empirical models: we use the term "quick-and-dirty" (QAD) calculations.
Another approach, the topic of the present article, is to perform model reduction, that is, to formally reduce the dimension of a system of ODEs derived from a rigorous approach before integrating it in time. To this end, taken from current mechanical engineering practice, there are two popular methods, and both are incorporated in some commercial software simulation tools: modal reduction [4] and dynamic conden-
sation [5]. The idea behind modal reduction is to approximate a dynamic system response through a linear
combination of several, often low-frequency, natural eigenmodes of the system. The second approach is based on the Guyan method [6], and is just an intuitive engineering extension of the Shur complement

 tion is possible in principle. If matrix E is degenerate then we do not have a system of ODEs, but rather
 It is necessary to stress that Eq (5) should be read in a mathematical, and not in a computational sense

tion step, we rewrite Eq (1) from an implicit to an explicit system of ODEs

which is again in the form of $\mathrm{Eq}(1)$. In some cases the methods treated in the review can be generalized to $\frac{p p}{p} \cdot\left[\begin{array}{cc}I & 0 \\ 0 & W\end{array}\right]$
together with the new variables $z=d \boldsymbol{y} / d t$, becomes

$$
\frac{z^{\not p}}{\boldsymbol{\sigma}_{z} p}
$$

 ond order in time. It is a simple matter to convert them to the form of Eq (1) by increasing number of -つәs јо sА -дәоо иәчм әsво әұе! $F \in \Re \times \Re$ are system matrices, typically sparse and often symmetric, and the vector $\boldsymbol{f} \in \Re^{n}$ describes
the system load. If the matrices contain constant coefficients then the system of ODEs is linear, and otherwhere the unknown vector $\boldsymbol{x}(t) \in \mathfrak{R}^{n}$ contains unknowns functions in time, $E \in \mathfrak{R}^{n} \times \mathfrak{R}^{n}$ and

$$
E \cdot \frac{d \boldsymbol{x}}{d t}=F \cdot \boldsymbol{x}+\boldsymbol{f}
$$

τ

It should be noted that we have not tried to reflect the priority of research groups in this field. In many
cases, our citations should actually be read as "see, for example, Ref ...". seems that human intervention is inevitable. eral results. Some algorithms for model reduction exist but, in contrast to linear systems, unfortunately, it non-linear systems of ODEs. Here success depends on a particular problem, and there are almost no genis known but the challenge remains as to how to compute it in reasonable time. Finally, we take a look at

 system of ODEs depends on the problem dimension (the number of equations in the system) to the cubic of ODEs. The challenge faced here is that the computational time required for a model reduction of a linear

 ODEs. sum of times for adaptive grid generation and the subsequent model reduction of the refined grid system of necessary to compare the time taken for model reduction of a system of ODEs built on the fine grid with the

 computational domain gets refined or coarsened based on a priori or a posteriori local error estimators [15].

An adaptive grid generation process starts with some initial grid, and then the grid in different parts of the described.
 tribution from the entire geometrical domain (much as eigenvectors do). Form this point of view, mode
 opportunities of model reduction to minimize the problem dimensionality are much greater, because adapmodel reduction according to Eq (7) is, in a sense, similar to adaptive grid generation [14]. However, the nal PDEs is far from an optimal basis to represent the solution of the PDEs. From this point of view, the The physical background for model reduction so far is that the discretization grid used to solve the origi-
which can then be used later on, perhaps in another simulation package.

$\frac{d z}{d t}$
 $\hat{A} \cdot z$
 + \hat{b}

produces a system of ODEs of reduced order k Eq (4) should be projected onto it and this projection proces

according to some norm
 a new low order set of coordinates for the given basis. dimensional vectors that form a basis for the reduced subspace, and the k-dimensional vector z represents
 Eq (6) stats

$u » y$ ' $y^{46} \ni 2$ ' $3+z \cdot X=x$

follows
 the huge computational cost to solve the system's response during the discretization process. This in turn leads to the high dimension of system matrices and finally to product of the number of unknowns in a system of PDEs to be solved by the number of nodes introduced
 Krylov subspace methods is discussed in Section 4.2. they destroy the sparsity of the original matrices. In other words, computationally it is necessary to work
with the two original sparse matrices. The question on how to effectively compute Eq (5) for the case of

$(V-I S) \cdot \mathcal{D}=(s) \emptyset$

- B
($七 \mathrm{I}$)

 $(s)_{\boldsymbol{\Omega}}^{\boldsymbol{\Pi}} \cdot(\mathrm{s})_{\emptyset}=(\mathrm{s})_{\boldsymbol{X}}$
 $(s)_{\boldsymbol{\Lambda}}=\{(\mathfrak{t}) \boldsymbol{n}\}_{T}{ }^{\prime}(s)_{\boldsymbol{X}}=\{(\mathcal{t}) \boldsymbol{\mathcal { C }}\}_{\boldsymbol{T}}$
[عI] s.op A dynamic system is often considered in the frequency domain, when the Laplace transform operator

The quality of the model reduction step of $\mathrm{Eq}(10)$ is determined by a norm ว2zıs วuирs วч1

 Fig. 3 Sketch of the model reduction equations (9) before and (10) after the model reduction step. The

approximation of the original vector $\boldsymbol{y} \in \mathfrak{R}^{k}$. This transformation is sketched in Fig. 3.

[^0]

 $p<n$. The relationship between required outputs and the system state is given by the gather matrix hand, the observer is interested in only a few outputs, specified by vector $\boldsymbol{y} \in \mathfrak{\Re}^{p}$ with the dimension nals $m<n$ is typically small, and this means that matrix B has a small number of columns. On the other tributed to the internal nodes in accordance to the scatter matrix $B \in \mathfrak{R}^{n} \times \Re^{m}$. The number of input sig-
 internal state vector \boldsymbol{x}, governed by ODEs, is not directly accessible to an external observer. The observe

4. Introduction to Krylov Subspaces 1000 to 2000.

 small order systems only. though the results described above are valid all linear dynamic systems, practically we can use them for

 The time required to solve the Lyapunov equations as well as to perform a singular value decomposition due to computational reasons, they are limited to relatively small systems. numerous examples of their applications. However, they are out of the scope of the present review, since,

 system.

 fully automatic. A user just sets an error bound and then, by means of Eq (18), the algorithm finds the valid for arbitrary input functions. This means that model reduction based on these methods can be made
 (8I) ($\left.{ }^{u} \rho+\cdots+{ }^{1+y} \rho\right) \tau>^{\infty}\|\supseteq-乌\|$
reduced k-dimensional system, as follows bounds for the difference between the transfer function of an original n-dimensional system and its
 $\left.\underline{(\widetilde{O} \cdot d)^{l} \gamma}\right)^{\rho}={ }^{?} 0$ and observability grammians original dynamic system are equal to the square root of the eigenvalues of the product of the controllability for the controllability grammian P and observability grammian Q. Then the Hankel singular values of the $\stackrel{5}{6}$
if one solves two Lyapunov equations

is considered as a right Krylov subspace. In addition to it, and in parallel, the left Krylov subspace

 below the main diagonal. It can be considered as an orthogonal projection of the matrix A onto the given
 ${ }^{V} H=X V_{*} X$
$H_{A} \in \mathfrak{R}^{k} \times \mathfrak{R}^{k}$, related to the original matrix as follows
 4.1 Arnoldi and Lanczos algorithms to build the Krylov subspace relatively small k. written, then, because of rounding errors, they would become computationally linearly dependent even for

matrix A to this vector up to $k-1$ times, or

 -[it] К.мииәо чюг them, one way or SWAW rof 1 paldí aq ospp of sanumo asayt

 Inste

 (ε) to the original matrix as

 $I=X \cdot{ }_{*} X$ matrices X and Y such that
 A^{*} is the conjugate transpose of the matrix A. рие ‘suоп̣еэ!

2) The linear equations $F \cdot \boldsymbol{b}=\boldsymbol{a}$ are solved by an iterative method, $\boldsymbol{b}=F^{-1} \cdot E \cdot \boldsymbol{v}$. If lucky, an iter-
 When the dimension of A grows large enough LU-decomposition is no longer useful because it takes too Once again, the above speedup is possible only because higher level algorithms do not need to have
access to the full matrix A^{-1}; otherwise we would have no option but to compute it.

 angular this is again a fast operation.

 and U many times. Then, each multiplication $F^{-1} \cdot E \cdot \boldsymbol{v}$ is performed in three steps: where L and U are lower and upper triangular matrices, respectively. This is costly, but we will require L $\Omega \cdot T=H$
itive definite matrix, see [23]), which can take into account the sparse structure of F : procedure, one performs an LU-decomposition of F (or equivalently, a Cholesky decomposition for a pos direct computation is unwise. It is much more efficient to compute the product $F^{-1} \cdot E \cdot \boldsymbol{v}$. First, before the computational cost to compute this product is very high due to the presence of the matrix inverse. Hence its
 'spo
We now discuss, using this example, the advantage of the iterative structure of the Krylov subspace meth-

 compute the product

 of linearly dependent vectors in (24) and (25). tient of k by the number of columns of the matrices B or C, but the exact answer depends on the existence
 One difficulty with the block-Krylov subspaces is that it is more difficult to predict the number of multipli-
 type approximant of the original transfer function (14). On the other hand, if one performs Lanczos algo-

[^1]шәə

$$
\left\{g \cdot{ }_{\mathrm{I}_{-}}\left(I^{o} s-V\right){ }_{\mathrm{I}_{-}}\left(I^{o} s-V\right)\right\}_{l^{\prime}}^{y} Y
$$

 tem, where all moments will be $p \times m$ matrices. match first $q<2 k$ moments. This is easily generalized to the multiple input - multiple output (MIMO) sysPadé approximants match the maximum number of moments, $q=2 k$, while Padé-type approximants $\stackrel{\leftrightarrow}{\theta}$
number s_{o} (in most applications $s_{o}=0$) formulated in terms of moment matching in the expansion of the transfer functions around some given $k, \hat{G}(s)$, which retains the essential behavior of the large-dimensional original rational function. This is
 of the form of Eq (28). tiple-Output (MIMO) case a transfer matrix is of dimension p by m, each element of which being a function where z_{i} and p_{i} are zeros and poles of the transfer function and a is a constant. In the Multiple-Input-Mul(8乙)

$\frac{\left.\left({ }^{u} d-s\right)^{\cdots(}{ }^{\mathrm{I}} d-s\right)}{\left.\mathrm{I}^{-u} z-s\right)^{\cdots}\left({ }^{\mathrm{I}} z-s\right) b}=(s) \emptyset$

always be expressed in the factored form as
 For the case of Single-Input-Single-Output (SISO) systems, when matrices A and C both are composed $I^{\prime} S$ Approximating a Transfer Function by Padé and Padé-type Approximants and we briefly review them in the second part of this section.

 this case, the model reduction step (8) can be viewed as an approximate solution of the original system (4),

 эч јо ι ио!чиәш!

 the coordinate transformed Arnoldi [33] for stable model reduction, and the provably passive model reduc-

 (bounded), and passive, which is to say, the system does not generate energy. If so, then it is important, The original dynamic system can be stable, that is, when time goes to infinity the values of \boldsymbol{x} remain finite position for each value of s_{i}
 how many are needed. Computationally this adds an additional load. If one uses LU-decomposition for the

 This idea was implemented in the so-called Rational Krylov method [31][32], where the Arnoldi or Lanc-

 account the left Krylov subspace (33). Lanczos algorithm is made by an oblique projection on the right Krylov subspace (31) that takes into

 tive formulas for producing the reduced matrices \hat{B} and C. greatly simplify for the case of an expansion about $s_{o}=0$, and that there are computationally more effec-

$$
X \cdot \supset=\supseteq \underbrace{\prime} \cdot g \cdot{ }_{\mathrm{I}-}\left(I^{o} s-V\right) \cdot X_{*}^{X} \cdot{ }_{\mathrm{I}}^{\mathrm{T}} H=\underset{\sim}{g} \cdot\left({ }^{T} H^{o} S+I\right) \cdot{ }_{\mathrm{I}}^{T} H=\underset{\sim}{V}
$$

terms of matrix-vector products only, as for the Krylov subspace methods. The second step, balancing, with for the case of a sparse matrix A. Also, the advantage of these methods is that they can be formulated in is already proportional to the square of the system dimension n, and it may be linearly proportional to n faster than for exact grammians [64][65][66][67]. For the case of a dense matrix A, the computational time

 A general idea to decrease the computational time is to change the exact grammians to their low-rank dimension. for both steps, even using the most advanced computational methods [63], grows as the cube of the system

 The optimal minimal reduction methods for linear systems comprise two computationally expensive and in [62] there is a good overview of existing strategies. tems based on the methods described in Section 3. In [7] these approaches are referred to as SVD-Krylov, and this drives mathematicians to develop computationally effective strategies for large dimensional sysUnfortunately, Padé and Padé-type approximants do not have global error estimates, similar to Eq (18), 5.2 Approximating Lyapunov Equations simulations. reduction of advection-diffusion PDEs, even though this body of work is much closer to typical MEMS [60], and ties of model reduction: Electrostatic gap-closing actuator [59], Linearized model for a micromirror
[60], and the Comb-drive resonator [61]. It is interesting to note that the MEMS community appears to Finally, we have the MEMS community which has just recently started to exploit the modern opportunidominated flow [9]. media [43], Groundwater flow in discretely fractured porous media [8], and Diffusion and convection fusion (optical tomography) problem [40], Radionuclide decay-chain transport in porous media [41], equation for groundwater flow [37][38], Mass transport in hydrogeologic environments [39], Photon difis used to the total number of papers on the solution of advection-diffusion PDEs: Advection dispersion model reduction is at the beginning stage if we compare the number of papers in which model reduction plines. They mostly deal with the single-input-complete-output (SICO) case discussed above. Here, nuclear reactor by the finite difference method [57], Aeroelastic analyses of turbomachines [58].
Another community solves the advection-diffusion PDE, which arises in a variety of engineering disciproblems: The Helmholtz equation for exterior structural acoustics by FEM [56], Neutron noise for - The ideas from electrical engineers have been used for the model reduction of wave-propagation-like
 electromagnetic problem [52], Electromagnetic devices modeled by linearized Maxwell equations [53], lines [50], Magetoquasistatic analysis for packaging parasitics with skin effect [51], PEEC model of an on an alternate Partial Element Equivalent Circuit (PEEC) formulation [49], Coupled lossy transmission interconnect [47], Lossy multiconductor transmission lines [48], 3D interconnect and packaging based - The largest community comes from electrical engineering where model reduction is mostly employed to inct communities: methods have been used for the model reduction of a linear system (9). The papers come from several dis-

 sional subspace (6), one can use results of the full order simulation of the original dynamic system (4), and

 Fore the complexity of the original phenomena. We remind ourselves that nonlinear systems may show

model reduction of large nonlinear systems, there appears to be one approach only, which we consider in
the next section use ideas from the previous section [59][75][76]. Nevertheless, to our knowledge, for the general case of lems [73][74], and some special cases where it is possible to find particular approaches which allow us to

There are some methods for model reduction of nonlinear systems applicable to small-dimensional probexpansion. order to improve the precision of the linearization process, the authors have included quadratic terms in the possible depends on the application in question. There is an interesting example in Refs [71][72], where, in then to make model reduction for the resulting linear system. Definitely, the answer as to whether this is state vector. Another popular alternative is to linearize the non-linear system around an operating point and to apply the model reduction to the linear subparts [24], thus reducing the total number of unknowns in the An evident solution for model reduction is to split the whole system into nonlinear and linear parts and then $[(f) \boldsymbol{n} \cdot(t) x] f=\frac{t p}{x p}$

Note that, even when system matrices depend on $\boldsymbol{x}, \mathrm{Eq}(4)$ is a special case of a general non-linear system examples of extending Krylov subspace model reduction methods to this case [54][70]. they depend explicitly on time only, then we have a special case of a time-varying system, and there are
Now let us allow the elements of the system matrices to depend on the state vector \boldsymbol{x} and on the time. If Nonlinear Systems
of order more than 12000 were solved by LYPACK within a few hours on a regular workstation. mented in the library LYPACK [69] (it requires MATLAB). As mentioned in Ref [69], Lyapunov equations to convert any linear dynamic system to one with a symmetric transfer function. transfer function is a scalar. In the MIMO case, one can use a transformation described in Ref [68] in order here there is also no need for balancing. This is always true for any SISO system, because in this case the metric transfer function, the Hankel singular values are equal to the eigenvalues of the cross-grammian, and to find the so-called cross-grammian R. It happens that in the case of a linear dynamic system with a sym-

$$
\nu \cdot g-=V \cdot y+y \cdot V
$$

solve just a single Lyapunov equation and there is no need to perform balancing. Another approach is to
use, instead of two Lyapunov equations (15) and (16), the Sylvester equation [68] the grammians are equal to each other because Eqs (15) and (16) become the same: then it is necessary to appropriate coordinate transformation one can obtain Eq (4) with a symmetric matrix A [33]. In this case, symmetric. Note, that if matrices E and F in $\mathrm{Eq}(1)$ are symmetric and E is positive definite, then by an

A very simple case of model reduction arises when the inputs are the same as the outputs, and matrix A is
and, for the general case of $\mathrm{Eq}(36)$, the reduced model becomes

the elements of A and \boldsymbol{b} depend on \boldsymbol{x}, we can write
The final step is to project original non-linear equation onto the low-dimensional basis. For Eq (4), when

 and Eq (39) actually reduces this norm to a minimum. The problem is that it is difficult to predict, a priori, $\|\underline{\sim}-M\|$

The transition from $\mathrm{Eq}(37)$ to (39) can be made completely automatic because according to SVD-theory
there is an error estimate based on singular values with the norm (0t) $\quad \cap=X$
reduced basis on which to project the original differential equation: shows that all observations are effectively described by a small number of vectors \boldsymbol{u}_{i}, which gives a where the reduced matrices are formed from the full matrix by leaving only k dominant vectors. Eq (39) $\sum_{i=1}^{k} \sigma_{i}\left(\boldsymbol{u}_{i} \cdot \boldsymbol{v}_{i}^{T}\right)$

$$
=M
$$

this gives us a low-rank approximation of matrix W of the form we can take only a small number singular vectors, $k<s$, corresponding to the largest singular values, and wher, and $V=\left\{\boldsymbol{v}_{i}\right\}$ is a matrix of right singular vectors. Provided the singular values of W rapidly deca
where $\Sigma=\operatorname{diag}\left\{\sigma_{i}\right\}$ is a diagonal matrix of singular values, $U=\left\{\boldsymbol{u}_{i}\right\}$ is a matrix of left singular vec-

Decomposition (SVD) [7][23] mally possible to find a low rank approximation within a given error margin by means of a Singular Value make a special investigation in this respect. be taken. Hence, POD is more of an "art", and typically, for any new nonlinear system, it is necessary to
 choose the most typical input functions, and to perform simulations with them. Unfortunately, there exist possible to perform model reduction for any input functions, for non-linear systems it is necessary to
 only, and if it does not give a good representation of the whole ensemble of possible values of \boldsymbol{x}, then the Eq (4). This is the most crucial step during POD because the reduced basis will be obtained from matrix W where matrix W is composed from s state vectors \boldsymbol{x}_{i}, corresponding to different times of simulations of $W=\left\{\boldsymbol{x}_{i}\right\}, W \in \Re^{n} \times \mathfrak{R}^{s}$
one or more simulations and to collect a series of so-called "snapshots" Let us consider a slightly simplified procedure for a finite-dimensional system. The first step is to perform process can be based on the system matrices without performing a full order simulation.

 expansion point. This procedure still does not give a global error estimate as the balanced truncation
 then to use the local error estimate on the border of this range as a monitor as to when to stop the mode the transfer function is required. It is possible to set s_{o} to an expansion point in the middle of this range and Lanczos algorithm. First, it is necessary to estimate a range of frequencies in which the approximation of

 ronment. As was already mentioned, the Arnoldi process is more computationally stable and one can tem, their behavior is fairly predictable, and they are easily implemented in almost any computational envibased on the Arnoldi and Lanczos algorithms are in a mature state. They scale well with the size of the sys-
 Let us summarize the current status of automatic model order reduction. The situation is reasonably good uo!snjuou we will see further development of these ideas. opens new perspectives for applications of POD to nonlinear model reduction and hopefully in the future the introduction of "empirical grammians" which are computed based on "empirical snapshots". This

 The original POD procedure does not take into account the information about required system inputs and the full SVD decomposition [96][97] and thus keeping computational time within reasonable limits. methods based on the Krylov subspaces can help to find the dominant singular vectors without performing enough computational resources in order to make the decomposition (38). It happens that again iterative

 community has also started to employ this technique [71][94][95] linear PDE [88]-[90], and various Mechanical engineering problems [78],[91]-[93]. The MEMS tems [83]-[86], Cascading failures in power systems [87], Feedback control of systems governed by a nonControl of a solid fuel ignition [80], Chemical vapor deposition [81][82] and other Distributed reacting sysemployed in a variety of disciplines tied with nonlinear dynamics: Rapid thermal processing systems [79],

POD has been used extensively in fluid dynamics in order to model turbulence [77]. Recently, it has been was reduced only by a factor of six. reduced from 21540 to 15 (about 1500 times) but, because of the above reason, the time of the simulation

model reduction [106][107], SVD-Krylov model reduction [108], and POD [109][110]. ular field: Adaptive meshing [103], Krylov subspaces [104], Control theory [105], Moment matching

 - B. B. King - http://www.math.vt.edu/people/bbking/
 - P. Benner - http://www.math.uni-bremen.de//benner/ scientists involved in model reduction, in which one can find additional resources:

- A. C. Antoulas - http://www-ece.rice.edu/ $/$ aca/ slide shows on model reduction with illustrations and examples [101][102]. Below there are homepages of The advent of the internet has made accessible a wide variety of informational resources. There are good On-line resources when the governing equations can be directly projected to the reduced basis. for those applications where it is possible to obtain a reduced system matrix (42) in a closed form, that is, how to obtain matrix (37), all other POD steps can be made fully automatic. POD is especially attractive sible to state that human intervention here is limited to decision making. After a researcher has decided on the POD suggests quite an appropriate framework for general nonlinear model reduction because it is posa special investigation in order to learn the special behaviour and requirements of the system. Nevertheless, erated, and how often. Alternatives here are to follow the example of a similar nonlinear system, or to make If not then the choice is clearly POD, where the main questions are: how many "snapshots" should be gen-- some special effective case for a particular nonlinear dynamic system. - spliting to linear and non-linear subparts, be inevitable here. First, it is necessary to see if a problem in question can be handled by The situation with nonlinear systems is quite different, and human intervention in some form appears to of the absolute error, but not that well if we consider the relative error.

 with the example from Ref. [100]. The norm (18) measures the absolute error over the whole frequency tems right now, provided the minimum over the norm (18) is enough for the application. Let us stress this neers. This will bring us truly automatic model reduction, just as we have for the case of small linear systhis area, and as the experience of mathematicians grows one can expect more practical outcomes for engiThe large linear system. It is quite evident that in the few next years we will see more practical examples in
for a
 imation to reduce the intermediate model as much as possible. trical engineering $s_{o}=0$ seems to be a satisfying choice) and then to employ a truncated balanced approx-

N
N্ᅳ증

 MEMS, in Materials and Device Chara0,
eds, Proc. SPIE 4175, Santa Clara, 2000, $82-93$

 UNESCO EOLSS (Encyclopedia for the Life Sciences), Contribution 6.43.13.4, Ju, Antoulas, Frequency domain representation and singular value decomposition, A.C. Antoulas,
UNESCO EOLSS (Encyclopedia for the Life Sciences), Contribution 6.43.13.4, June 2001. Springer-Verlag, 1986.

 equation, Int. J. Numer. Methods Fluids, 2001, 35, 25-38.
 A. Woodbury, K. N. Zhang, Lanczos method for
 A. C. Antoulas, D. C. Sorensen, Approximation of large-scale dynamical systems: An overview, TechStructures, 1996, 60, 403-409. N. Bouhaddi, R. Fillod, Substructuring by a two level dynamic condensation method, Computers and Haterials,1998, 10, 405-412 M. Emmenegger, J. G. Korvink, M. Bächtold, M. von Arx, O. Paul and H. Baltes., Application of
Harmonic Finite Element Analysis to a CMOS Heat Capacity Measurement Structure, Sensors and AlphaServer SC, September, 2000, http://www.epm.ornl.gov/evaluation/CRASH/index.html LS-DYNA performance for car-to-car and car-to-barrier benchmarks on IBM SP and Compaq
 T. Mukherjee, G. K. Fedder, D. Ramaswany, J. White, Emerging simulation approaches for microma-
chined devices, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 2000, 19, 1572-1589. яэуиадјду
during the writing of the review, and to Prof. Dr. Boris Lohmann for critically reading the manuscript. ical at Ritsumeikan University in Kusatsu, Japan. Authors wish thank Tamara Bechtold for invaluable help partly by DFG $1883 / \mathcal{1}$-1 from. Deutsch
 The research described in this publication was partly made possible by Grant IST - 1999-29047 from the

[45] Inc. 2000.
R. Achar, M. S. Nakhla, Simulation of high-speed interconnects, Proc. IEEE, 2001, 89, 693-728,

 K. Zhang, A. D. Woodbury, The Arnoldi reduction technique for efficient direct solution of radionu-
clide decay chain transport in dual-porosity media, J. Contam. Hydrol. 2000, 44, 387-416. K. Zhang, A. D. Woodbury, W. S. Dunbar, Application of the Lanczos algorithm to the simulation of
groundwater flow in dual-porosity media, Adv. Water Resour. 2000, 23, 579-589.
K. Zhang, A. D. Woodbury, The Arnoldi reduction technique for efficient direct solution of radionu-

 logic environments: performance comparison of the Laplace Transform Galerkin and Arnoldi modal
 H. N. Li, P. Aitchison, A. Woodbury, Methods for overcoming breakdown problems in the Unsym-
metric Lanczos Reduction method, Int. J. Numer. Methods Eng. 1998, 42, 389-408. Lanczos Reduction process, Int. J. Numer. Methods Eng. 1998, 43, 221-239.
 K. Galivan, E. Grimme, D. Sorensen, P. Van Dooren, On some modifications of the Lanczos algoAppl. 2001, 332, 139-164.
K. Gallivan, E. Grimme, algorithm, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 1998, 17, 645-654.
Z. J. Bai, R. W. Freund, A partial Padé-via-Lanczos method for reduced-order modeling, Linear Alg. A. Odabasioglu, M. Celik, L. T. Pileggi, PRIMA: Passive reduced-order interconnect macromodeling 688-LLE'691 '666I L. M. Silveira, M. Kamon, I. Elfadel, J. White, A coordinate-transformed Arnoldi algorithm for genA. Ruhe, D. Skoogh, Rational Krylov algorithms for eigenvalue computation and model reduction, in
Applied Parallel Computing, Lecture Notes in Computer Science, 1998, 1541, 491-502.
 K. Gallivan, E. Grimme, P. Van Dooren, A rational Lanczos algorithm for model reduction, Numeri E. J. Grimme, D. C. Sorensen, P. Van Dooren, Model reduction of state space systems via an implic-
itly restarted Lanczos method, Numerical Algorithms, 1996, 12, 1-31. C. Brezerical mathematics, Birkhäuser, 1980, v. 50, p. 250. C. Brezinski, Padé-type approximation and general orthogonal polynomials, International series of
 Handbook of numerical analysis (Ed: P. G. Ciarlet, J. L. Lions), Elsevier Science, 1998, 6, 3-174. R. M. Ferencz, T. J. R. Hughes, Iterative finite element solutions in nonlinear solid mechanics, in www.netlib.org/templates/templates.ps Society for Industrial and Applied Mathematics, Philadelphia, 1994, p. 112. See also http:// R. Barrett, M. Berry, Y. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Poso, C. Romine,
H. van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, put. Appl. Math. 2000, 123, 395-421.
R. Barrett, M. Berry, Y. Chan, J. Den R. W. Freund, Krylov-subspace methods for reduced-order modeling in circuit simulation, J. Com-

 G. H. Golub, C. F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins studies in the mathemati-

훙 D. C. Sorensen, A. C. Antoulas, The Sylvester equation and approximate balanced reduction, Techni-
cal report, 2002, Rice University, Houston, http://www-ece.rice.edu/~aca/crossgram.pdf.
 caam/trs/2001/TR01-10.ps Lyapunov equations, Technical report, Rice University, Houston, 2001, http://www.caam.rice.edu

 A. Hodel, K. Poolla, B. Tenison, Numerical solution of the Lyapunov equation by approximate powe
iteration, Linear Algebra Appl. 1996, 236, 205-230. T. Penzl, Numerical solution of generalized Lyapunov equations, Adv. Comput. Math. 1998, 8, 33-48.
A. Hodel, K. Poolla, B. Tenison, Numerical solution of the Lyapunov equation by approximate powe T. Penzl, Algorithms for Model Reduction of Large Dynamical Systems, Preprint SFB393/99-40,
1999, http://www.mathematik.tu-chemnitz.de/preprint/quellen/1999/SFB393_40.ps.gz. tems, 2001. nical Procedings of the Forth International Conference on Modeling and Simulation of Microsys V. Srinivasan, A. Jog, R. B. Fair, Scalable Macromodels for Microelectromechanical System, in Techtion of Microsystems, 2001 Simulation, in Technical Procedings of the Forth International Conference on Modeling and Simulaon Modeling and Simulation of Microsystems, 2001.
 Z. Bai, D. Bindel, J. Clark, J. Demmel, K. S. J. Pister, N. Zhou, New Numerical Techniques and Tools K. Willcox, J. Peraire, J. White, An Arnoldi approach for generation of reduced-order models for turLanczos algorithm, Ann. Nucl. Energy, 2001, 28, 1595-1611. Z. F. Kuang, I. Pazsit, A. Ruhe, Calculating reactor transfer functions by Pade approximation via M. Malhotra, P. M. Pinsky, Efficient computation of multi-frequency far-field solutions of the Helm-
holtz equation using Pade approximation, J. Comput. Acoust., 2000, 8, 223-240. radiation problems, Radio Sci., 2000, 35, 331-340. R. D. Slone, R. Lee, Applying Pade via Lanczos to the finite element method for electromagnetic I. Balk, On a passivity of the Arnoldi based model order reduction for full-wave electromagnetic
modeling, IEEE Trans. Adv. Packag. 2001, 24, 304-308. J. E. Bracken, D. K. Sun, Z. Cendes, Characterization of electromagnetic devices via reduced-order
models, Comput. Meth. Appl. Mech. Eng. 1999, 169, 311-330. the Lanczos process, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 1999, 18, 133-141. Z. J. Bai, R. D. Slone, W. T. Smith, Error bound for reduced system model by Pade approximation via 239-248.
 Arnoldi-SVD connection, AEU-Int. J. Electron. Commun. 1999, 53, 254-260. L. Knockaert, D. De Zutter, Passive reduced order multiport modeling: The Pade-Laguerre, Krylov-

 16, 1454-1476.
M. Celik, A. C.
 M. Chou, J. K. White, Efficient formulation and model-order reduction for the transient simulation of A. E. Ruehli, A. C. Cangellaris, Progress in the methodologies for the electrical modeling of inter-
connects and electronic packages, Proc. IEEE, 2001, 89, 740-771.

 P. K. Gunupudi, M. S. Nakhla, Nonlinear circuit-reduction of high-speed interconnect networks using
congruent transformation techniques, IEEE Trans. Adv. Packag. 2001, 24, 317-325. J. R. Phillips. Projection frameworks for model reduction of weakly nonlinear systems. Proceedings
of DAC, 2000 . B. Lohmann, Order Reduction and Deter
tems, Math. Mod. Systems, 1995, 1, 77-90. B. Lohmann, Order Reduction and Determination of Dominant State Variables of Non-linear SysTrans Control Sys. Tech., 1995, 3, 102-109

 Proceeain.
213-216.

 tems: Theory and Tools, Delft University of Technology, 1994, http://www.ocp.tudelft.nl/sr/Down-

 7dd:oon/sqnd/Iunч

 Y. Chahlaoui, K. Gallivan, P. Van Dooren, Recursive calculation of dominant singular subspaces,
submitted to SIAM J. Matrix Anal. Appl., 2001. M. Fahl, Computation of POD basis functions for fluid flows with Lanczos methods, Math. Comput.
Model. 2001, 34, 91-107.

 E. S. Hung, S. D. Senturia, Generating efficient dynamical models for microelectromechanical sys-
tems from a few finite-element simulation runs, J. Microelectromech. Syst. 1999, 8, 280-289. A. Steindl, H. Troger, Methods for dimen
Int. J. Solids Struct. 2001, 38, 2131-2147

 Applications, (Ed.: S. Idelsohn, E. Onate, E. Dvorkin), @ CIMNE, Barcelona, Spain, 1998

[^0]: F18

[^1]: ${ }_{-}^{V} H=g \cdot\left({ }^{V} H^{o} s+I\right) \cdot{ }_{{ }_{-}}^{V} H=V$

