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ABSTRACT

Model order reduction techniques are known to work
reliably for finite-element-type simulations of MEMS de-
vices. These techniques can tremendously shorten com-
putational times for transient and harmonic analyses.
However, standard model reduction techniques cannot
be applied if the equation system incorporates time-
varying matrices or parameters that are to be preserved
for the reduced model. At the same time, if one aims
at automatic compact model generation it is most likely
that there are parameters that have to be preserved.

In this paper we demonstrate a method, based on
a multivariant Padé-type expansion, that can preserve
scalar parameters or functions during the reduction pro-
cess. We show that this method is applicable to convection-
diffusion type problems. As a technical example we in-
vestigate a micro anemometer.
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1 Considered application

The application to demonstrate the proposed reduc-
tion technique is an anemometer. It should be stated
that the method itself is not limited to a specific equa-
tion type, but that it is also possible to reduce problems
from other physical domains using this technique.

An anemometer is a flow meter that consists of a
heater and temperature sensors before and after the
heater in the direction of the flow. The flow influences
the temperature field and thus leads to a temperature
difference between the sensors. This temperature differ-
ence is measured and used to determine the fluid flow
[1].

1.1 Model generation

An important operating condition for anemometers
is that the heat inserted into the fluid is so small that
it does not change the flow significantly and, of course
that it does not cause chemical reactions in the fluid.
For modeling the anemometer we can especially use the
first condition very effectively. With this condition we
can exclude the computation of the fluid flow from the

model, and take it as specified. This has the great ad-
vantage, in that the equation to solve is only a linear
convection-diffusion problem, instead of the full set of
non-isothermal Navier-Stokes equations. This approach
is often referred to as the forced-convection approach,
because natural convection is not taken into account.

To generate and discretize the model we use the AN-
SYS simulation environment [2]. This multi-physics fi-
nite element environment offers the forced convection
approach. Figure 1 shows the geometry of the model.
At the bottom, there is the chip with the heater and the
sensors residing on a membrane, which functions also as
the wall of the channel. The fluids above and below
the membrane are assumed to have the same proper-
ties, however, no convection is applied below. Since the
temperature field usually does not dissipate far into the
flow field, only half of the channel is modeled. Another
important aspect is the cascaded flow profile. While
a parabolic profile would be best suited, ANSYS can
only handle constant velocities during the discretization.
Therefore the channel area was divided into four areas
with constant velocity, leading to an approximation of
the real flow profile. We want to stress again that this
approximation is not imposed by the model reduction
process, but by the discretization possibilities of AN-
SYS.
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Figure 1: Model of the anemometer

The forced convection approach requires a rather fine
meshing, in this case 61655 elements and 31200 nodes;
after applying the Dirichlet boundary conditions leading
to 29008 degrees of freedom for the 2D problem. If a
real 3D structure is to be simulated the dimensionality
of the original model would be remarkably higher. That
is, because the maximum mesh size is dependent on the
convection term. So if the convection term increases an
equally more refined mesh is needed. This dependency
can be expressed in the grid Pecklet number as described
in [3].

As the focus of this paper is the order reduction pro-



cess we will not discuss the validity of the model in more
detail. The original discretization will be used as a ref-
erence. However, we shortly want to summarize the
assumptions made during the modeling:

• The heat flow does not influence the fluid flow,
therefore no natural convection can be modeled.

• Material parameters are assumed to be constant.

• A cascaded flow-profile is used.

1.2 Mathematical formulation of the
considered problem

The physical model is a standard convection-diffusion
problem (eqn 1).

ρc · ∂T

∂t
= ∇ · (κ∇T )− ρc · ~v∇T + q̇ (1)

,where ρ denotes the mass density, c is the specific
heat, ~v is the fluid velocity and κ is the thermal conduc-
tivity. The parameter we want to preserve is the fluid
speed. Thus the spatial discretization of eqn 1 is:

Mcapẋ = (Mcond + vs ·Mconv)x + Load · u (2)

Here Mcap is the capacitance matrix, Mcond incor-
porates thermal conduction, Mconv contains the con-
vection terms and Load is the load vector. Thus all the
information of the flow profile is contained in the con-
vection matrix. Since convection is only applied to the
elements in the flow channel this matrix does not have
non-zero entries for every node and is thus not positive
definite. The factor vs is a scalar parameter. It can be
used to scale the influence of the convection: the pro-
file of the flow stays constant, but its magnitude can be
scaled. With the assumption that the flow profile will
not change for different absolute velocities, we can use
it this model to generate a reduced-order-model where
we can set the flow speed with a parameter.

1.3 The reduction process

To perform order reduction on the model it is neces-
sary to export the disretized model from ANSYS. This
is done with the GPL’d tool mor4ansys, which we use
to read ANSYS binary files and to write the matrices
as matrix-market files [5]. This tool can also perform
model order reduction, however at the moment it is lim-
ited to the conventional approaches.

The further processing of the data is done within
the computer algebra system Mathematica. This in-
cludes reading the matrices, performing the order reduc-
tion, solving the system and post-processing the result.
Mathematica routines for these different tasks written

at the IMTEK are collected in the IMTEK Mathemat-
ica Supplement (IMS) [6]. This software collection is
also released under the GPL and contains - besides the
already mentioned functions - many useful programs for
engineering problems. Of course everyone is strongly en-
couraged to test the IMS and mor4ansys himself. The
used reduction technique is described in the following.

2 Padé based Model Order Reduction

Many dynamic systems describing physical problems
show a rapid decay of Hankel singular values. This prop-
erty makes it possible to use Krylof subspace methods
to generate a low order approximation of the original
high dimensional model. These techniques are rather
established in research to use with standard linear first
order systems. The probably most often used algorithm
is the Arnoldi process. As this algorithm is the basis
for our parameter preserving approach it will be shortly
described in the following.

2.1 The Arnoldi process

We start with a non-parametric system of very high
order (eqn 3). E and A are quadratic matrices, the load
B may be either a rectangular matrix in the case of
multiple input functions, or a vector. The input function
u is, respectively to B, either a vector or a scalar, x is
the state vector.

Eẋ = Ax + Bu (3)

In the Arnoldi process at first we define the transfer
function G(s) of the system in the frequency domain
(eqn 4 ). Now a Taylor series expansion of this function
is performed, where the first n moments of the expansion
form a Krylov subspace. To ensure numerical stability
this subspace is not used directly, but an orthonormal
basis V is constructed that serves as a projection matrix
to build the reduced model of order n (eqn 5).

G(s) = −A−1B(I − sA−1E)−1 (4)
Erẋr = Arxr + Bru (5)

, Er = V T EV,Ar = V T AV

,Br = V T B, xr = V T x

The so generated model can then be computed like
the original one. As it is of a much smaller order than
the original model it can be computed with a fractional
amount of the computational resources otherwise needed.
To regain the complete high dimensional solution the
solution of the reduced system just has to be projected
back using V .

This method has already been applied to various
problems out of different physical domains and is known



to work reliably. Thus it can be very effectively used as
a fast solver procedure, e.g. during a geometry opti-
mization run. However, for automatic compact model
generation in our case this algorithm is not so well fit-
ted, as the only variables for such a model would be the
input function.

2.2 Parametric model reduction

To enable parametric model reduction the differen-
tial equation system has to contain parameters. In the
following one parameter will be used, however, the pre-
sented method is in not restricted to one, but can in
principle handle any number of parameters. A compa-
rable procedure was already proposed for geometrically
parameterized interconnect modeling [4]. As our imple-
mentation aims at a wide range of mathematical systems
we had to make minor changes to the algorithm which
mainly affect the handling of the mixed modes.

In the case of one parameter the equation system 3
changes to eqn 6 with the transfer function eqn 7. It
should be stated here that the parametric part can be
in any matrix or even in different ones. For a mechanical
system that means that it is possible to order-reduce a
model with a parametric damping or/and stiffness ma-
trix. For the presentation here we use the form our pro-
posed model also has. Another important part is that
only the matrix A1 has to be invertible.

Eẋ = (A1 + pA2)x + Bu (6)
G(s) = −A−1

1 B(I − sA−1
1 E + pA−1

1 A2)−1 (7)

The reduction process is in principle similar to the
Arnoldi process. The main difference is that the Taylor
expansion in not only performed around s, the com-
plex frequency, but also around the parameters. This
leads to pure moments for the frequency and the pa-
rameters, but also to mixed moments, where there are
contributions from the frequency and from the param-
eters. These mixed moments can rapidly increase the
dimension of the reduced model if they are all included
into the projection matrix separately. This is especially
the case, if the different matrices contain completely dif-
ferent physical effects, like e.g. convection and diffusion,
as this increases the needed dimensions of the reduced
models quite noticeably. Therefore in our implementa-
tion we decided to average the mixed moments of one
iteration into one vector. Thus, in the case of one pa-
rameter, every iteration enlarges the projection matrix
by 3 vectors; the pure moments for s and p and the
combined mixed moments.

3 Results

The goal in model order reduction is to find a good
approximation to a high-dimensional model by generat-
ing a low-dimensional model and thus saving resources.

To judge the quality of the approximation computa-
tional results are compared between the reduced-order
model and the original model. Of additional interest is
of course the savings in resources that can be achieved
using this technique.

The reduced model has a dimension of 102. Com-
pared to non-parametric reduction, where reduced mod-
els often are of a smaller order then 50 this is rather
big, however, it is obvious that adding parameters to
the reduced model results in bigger models. Even more
so, if the different matrices do not affect all the nodes
equally, as in this case, where the convection matrix
only has non-zero entries for the nodes residing in the
channel. At last also the type of problem we want to
model demands for extreme accuracy. The temperature
difference between the heaters typically lies below 1hof
the temperature at the heater, therefore the absolute er-
ror has to be extremely small, to represent the devices
behavior correctly.

3.1 Computational results

Figure 2 shows contour plots of the simulation re-
sult at different times. It is a visualization of the com-
plete, high-dimensional solution vector where the time
integration was performed with the low dimensional re-
duced model. To regain the complete state vector it is
only necessary to make a reverse projection of the re-
duced state vector. This also shows the high potential
of order-reduction techniques as fast-solver-procedures:
performing a cheap time integration on the low-order
model to gain the full, high-dimensional result.

Figure 2: Transient results for t1 = 0.006s, t2 = 0.012s,
t3 = 0.018s, t4 = 0.024s

While the contour plots are well suited to demon-
strate the principle functionality of the procedure, they
are not very convenient to determine the error induced
by the order reduction. As the relevant output for an
anemometer simulation is the difference temperature be-
tween the sensors, this value is also used to compare the
solution of the complete model with the solution of the
reduced model.

Figure 3 shows this temperature difference for steady
state solutions with different velocities. The small graph
inside the figure shows the deviation between the re-
duced model and the original model. This deviation lies
below 1% of the difference signal and in the order of
magnitude of 10−5 compared to the temperature at the
nodes itself.
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Figure 3: Steady state solution for the temperature dif-
ference between the sensors for different flow velocities

The reduced model fits the steady state solutions
very well, however the more interesting test is to com-
pare transient results, where the savings regarding the
requirements on computational resources with the order-
reduction approach are much bigger.

Figure 4 shows the transient response of the system
to a step excitation. It can be seen that all the curves
converge to the steady state solution. Commenting on
the error it stands out that at the beginning a rather
big error is done, while the error after 0.02s is very
small again. The reason for this behavior is that the
reduced model approximates the transfer function at a
specific frequency that was chosen for the expansion.
The Laplace transform of a step function however in-
corporates a wide range of frequencies. So when gener-
ating the model it has to be decided, whether it is more
important to match the steady state, or if the high fre-
quency part is more important. This trade-off can be
minimized by using a multi-point expansion, where the
same expansion is done for several frequencies, but this
naturally further increases the dimension of the reduced
model.
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Figure 4: Transient results for v = 0, 0.5 and 1.0m/s

Another application of the reduced model is shown
in figure 5. Here the scalar parameter v is a time de-
pendent specified variable, leading to a time-variant sys-
tem. However, it is not possible to compare this result
to results computed with ANSYS, as ANSYS can only

handle constant convection terms.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
t HsL

0.

2.�10-3

4.�10-3

6.�10-3

8.�10-3

1.�10-2

1.2�10-2

DT HKL
0.0

1.0

vHtL Hm�sLDT
vHtL

Figure 5: Temperature difference between right and left
sensor for time-varying flow speed

3.2 Computational resources

For standard non-parametric reduction procedures
the reduction resources typically lie in the range of the
steady state solutions. This is not achievable in this
case. However, the reduction process stays with 92s
clearly below the 10 minutes ANSYS needs for the tran-
sient solution of the problem. However, once the re-
duction is performed the transient solution of the re-
duced model computes in less than one second. Due
to the parametric approach we can thus perform the
rather costly reduction process once and reuse the re-
duced model very effectively for with different parame-
ter values.

4 Conclusion

We have shown that parameter preserving model or-
der reduction techniques can be effectively applied to
convection-diffusion problems. Even the demanding ap-
plication of an anemometer can be handled with very
good results. Thus it is a very good approach to auto-
matic compact modeling and reduction of parametric or
time-variant systems.
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