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Abstract
We propose the use of parametric model reduction for

fast simulation of cyclic voltammograms. The model for a
cyclic voltammogram is treated as a system with a
parameter (applied voltage) to be preserved during model
reduction. The voltage is preserved in the symbolic form
during model reduction and we can accurately simulate
the cyclic voltammograms with a reduced system by
spending much less time and memory as compared with
direct simulation based on the original large-scale model.

1. Introduction
Model order reduction allows us to find an accurate

low-dimensional approximation for a high-dimensional
system of ordinary differential equations (ODEs) obtained
after the discretization in space by the finite element
method [1][2]. A formal and computationally efficient
procedure based on the Arnoldi algorithm takes as input
the system of ODEs in the form

  

€ 

Edv x /dt + Kv x = bu (1)

with a state vector   

€ 

v x  and convert it to a similar system

  

€ 

) 
E dv z /dt +

) 
K v z =

) 
b u (2)

that, however, has much smaller dimension of the state
vector   

€ 

v z .
In many engineering applications, the matrix K

depends on parameters that should be preserved in the
symbolic form. For example, these are film coefficients
[3] in simulation of a thermal problem and the flow
velocity in simulation of an anemometer [4]. In order to
treat these important cases, conventional model reduction
should be extended to parametric model reduction.

In our paper we present an application of parametric
model reduction to scanning electrochemical microscopy
(SECM) [5]. In the next section, we construct a
mathematical model for SECM that after discretization in
space produces a high-dimensional ODE system. Then we
introduce the parametric model reduction technique in
section 3 and discuss how it can be applied to the SECM
model in section 4. In section 5, the simulation results are
presented. Finally, we give conclusions.

2. Case study
We consider a cylindrical electrode operating in the

feedback mode of SECM as shown in Figure 1. The
computation domain under a 2D-axisymmetrical
approximation includes the electrolyte under the
electrode. We assume that the concentration does not
depend on the rotation angle. A single chemical reaction
takes place on the electrode:

RedeOx
f

b

k

k
⇔+ − (3)

According to the theory of SECM [6], the species
transport in the electrolyte is described by diffusion only.
The diffusion partial differential equations are given by
Fick’s second law as follows

1
2

11 / cDdtdc ∇⋅= (4)

2
2

22 / cDdtdc ∇⋅= (5)

The Buttler-Volmer equation has been used to describe
the reaction rate on electrode surfaces for the chemical
reaction (3)

ddOxOx ckckj ReRe ⋅−⋅= (6)

The reaction constants for the forward reaction and the
backward reaction are given as follows

€ 

k f = kOx = k 0e
αzF(E−E 0 )

RT

 

 
 

 

 
 

(7)

€ 

kb = kRed = k 0e
−(1−α )zF (E−E 0 )

RT

 

 
 

 

 
 

(8)

where 0k  is the heterogeneous standard rate constant, and

€ 

α = 0.5  is an empirical transmission factor for a
heterogeneous reaction. 

€ 

F  is the Faraday-constant, R is
the gas constant, T is the temperature and n is the number
of exchanged electrons per reaction. This allows us to
write the boundary conditions at the electrode as follows:

jnc =⋅∇
v

1
  and  jnc −=⋅∇

v
2

(9)

The control volume method has been used for the
spatial discretization of the equations above. The resulting
system of ordinary differential equations is as follows

  

€ 

Edv c /dt + K{U(t)}v c = b, v c (0) =
v c 0 ≠ 0 (10)

where E  and K{U(t)} are system matrices, nRc ∈
v is the

vector of unknown concentrations. nR  means that there
are n elements in the vector c

v  and n is usually referred to
as the dimension of the system (10). The vector b is the
load vector, which arises as a consequence of the
Dirichlet boundary conditions imposed at the bulk of the
electrolyte.

There are two important differences between Eq (10)
and (1). First, the matrix K depends on the voltage that in
turn depends on time in the simulation of a cyclic
voltammogram. This feature must be preserved in the
reduced model. Second, the initial condition of the system
is always nonzero in our case, i.e. 00 ≠c

v
.



3. Parametric model reduction
The theory of model reduction is based on the use of

the Laplace transform of Eq (1):

€ 

(sE + K)x = bu
y = cx

(11)

where s is the Laplace variable, x is the Laplace transform
of the vector   

€ 

v x  and y  is the output: a linear
transformation of the state vector that produces a desired
observation.

The first parametric model reduction method in [7]
deals with a two-parameter system that extends the
previous equation as follows

cxy

buxEEsEs

=

=−+ )( 02211 (12)

In addition to the Laplace variable 

€ 

s1, the authors
assumed that the system matrix K depends on its own
parameter, 

€ 

K = s2E2 − E0, that they wanted to preserve
in the symbolic form.

They derived the reduced model as

€ 

(s1
ˆ E 1 + s2

ˆ E 2 − ˆ E 0)z = ˆ b u
ˆ y = ˆ c z

(13)

where
cVcbVbVEVEVEVEVEVE TTTT ===== ˆ,ˆ,ˆ,ˆ,ˆ

002211

and the projection matrix V is computed based on the
parameter transfer function of (12)

bEEsEscssh 1
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The moments of the transfer function with respect to the
two parameters are

bEEEEEcF j
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The projection matrix V is computed based on the
moments  in (16), that is
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Theorem 4 in Ref [4] proves that
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and this guarantees the accuracy of the reduced model.
This method was extended to systems with more than

two parameters in Ref [8], where the linear system with p
parameters was defined as
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Since c does not contribute to the projection matrix V, the
series expansion of only vector x instead of the transfer
function is considered in [8]. From (18), we have
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is defined similarly to (15).

The projection matrix V is constructed by the terms in the
series above, that is
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We can expand (18) to show it more clear:
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In Ref [8], there is a similar theorem that can prove
that the moments included in (18) are the same for the
reduced model. In the next section, we will show how this
method can be applied to the model from section 2.

4. Parametric model reduction for the SECM model
For the SECM model in (11), the system matrix K

depends on the voltage that plays the role of the input
function, that is, it changes in time. According to the
SECM theory, we can express this dependence as follows

€ 

K =G + s1D1 + s2D2

where

€ 

G,D1,D2are constant matrices and 

€ 

s1 and 

€ 

s2  are
the functions of the voltage applied on the electrode

€ 

s1(t) = eu(t ) , 

€ 

s2(t) = e−u( t )

with 
0)()( vtvtu −=  were 

0v is the reference voltage.



As result, the system (11) can be re-written into the
following form:

  

€ 

Edv c /dt + Gv c + (s1D1 + s2D2)
v c = b (19)

where the two scalar functions 

€ 

s1(t),s2(t)  are considered
as parameters.
The next problem is that the initial condition of system
(11) is not equal to a zero vector, 00 ≠c

v . The Laplace

transformation for (19) produces

  

€ 

(sE + s1D1 + s2D2 + G)x(s) = bu(s) + Ev c 0 (20)

where x(s) is the Laplace transformation of c
v . Eq (20) is

different from (17) with p=3. This means that (18) cannot
be used yet to construct the projection matrix based on
(20). However, we can first do a vector transformation on
(19) by 

0

~
ccc
vwv

−=  and obtain a new system in respect to

c
~v  [9]

  

€ 

Edv ˜ c /dt + Gv ˜ c + (s1D1 + s2D2)v ˜ c =
b + Gv c 0 + s1D1

v c 0 + s2D2
v c 0

(21)

For the new system, the initial condition is exactly zero,

0
~

000 =−= ccc
rvv . After the Laplace transformation, (21)

becomes,

€ 

sEx(s) + Gx(s) + (s1D1 + s2D2)x(s)
= ˜ b u(s)

(22)

with   

€ 

˜ b = b + Gv c 0 + s1D1
v c 0 + s2D2

v c 0 .

Eq (22) is now similar to (17), except that the vector b in
(17) does not depend on parameters while the vector 

€ 

˜ b 
depends on two parameters. However, it is relatively easy
to deal with this by comparison of the right sides in (18)
and (22). In (18), the vector b is one of the base vectors to
span the subspace for matrix V, and in (22) the vector 

€ 

˜ b 
should play the same role as b. The vector 

€ 

˜ b  is actually
the l inear combination of three vectors,

  

€ 

(b + Gv c 0),D1
v c 0,D2

v c 0 , so that when we construct the
projection matrix V according to (18), we replace the
vector b in (18) by the three vectors above, that is, by a
matrix   

€ 

B = (b + Gv c 0,D1
v c 0,D2

v c 0)  so that it is independent of
the parameters. We construct the projection matrix V for
(22) according to (18) as
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The reduced model is of the form

€ 

ˆ E dz /dt + ˆ G z + (s1
ˆ D 1 + s2

ˆ D 2)z = ˆ b (23)

where,

,ˆ,ˆ,ˆ
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€ 

ˆ D 2 = V T D2V , ˆ b = V T ˜ b .

After obtaining the solution z in (23), we can return
back to the solution c

~v  in (21) by Vzc ≈
~v , and the original

solution c
v  in (11) can be computed by 

0

~
ccc
vvw

+= .

In the next section, we will show the efficiency of
parametric model reduction for the simulation of the
voltammogram by means of numerical experiments.

5. Simulation results
The discretization of the SECM device shown in Fig. 1

resulted in a system of ordinary differential equations (10)
with the dimension of the state vector equal to 16912. The
method described in the previous section produced a
reduced model with dimension 202.

Figure 2 to Figure 5 show the simulation results of the
original and reduced models. The voltage had a triangular
waveform:

€ 

u = u + at, 0 < t < tumax
u = u − at, tumax < t < tu0

 
 
 

The figures display the current as a function of voltage
(not in time) as this is the usual way to represent
voltammograms. The solid line is the result computed by
full simulation of the original large model, the dashed line
is the result computed by the small reduced model. The
results of the reduced model are accurate for a wide range
of the dynamic behavior when the value of

€ 

du /dt  changes
by three orders of magnitude (0.0005-0.5).

Figure 1:  The computational unit.



Figure 2: Simulation results of the cyclic
voltammogram when 

€ 

du /dt = ±0.5 .

Figure 3: Simulation results of the cyclic
voltammogram when 

€ 

du /dt = ±0.05 .

Figure 4: Simulation results of the cyclic
voltammogram when 005.0/ ±=dtdu .

Figure 5: Simulation results of the cyclic
voltammogram when 0005.0/ ±=dtdu .

6. Conclusions
We have introduced in our paper a new parametric model
order reduction technique in order to make a compact
model for scanning electrochemical microscopy. The
parametric model order reduction preserved the
parameters in the original model into the reduced small
model in the symbolic form so that the reduced small
model can replace the original large model in simulation
even when the values of the parameters change. At the
same time, the reduced model produces solutions as
accurate as the solution computed directly from the
original large model. Even though the dynamic model for
SECM is a time varying system, when we make use of the
special structure of the system matrices, we can consider
it as a parametric system. Therefore the parametric model
order reduction technique can be employed to obtain a
reduced small model of this system that reproduces the
original system with good accuracy.
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