

Simulation of IGBT converter

E. Rudnyi CADFEM GmbH erudnyi@cadfem.de

Outline

 The work has been done for the ECPE workshop Thermal Engineering of Power Electronics Systems, 2009

- Overview
- Thermal Simulation in Icepak
- Compact Thermal Model through Model Order Reduction

European Center for Power Electronics

IGBT Converter

- Insulated Gate Bipolar Transistor:
 - Very efficient thermal losses about just 5%
 - However 20 kW converter produces 1 kW power dissipation.
- Electrothermal simulation is required:
 - Electrical properties of IGBT depends on temperature;
 - Too high temperatures reduces reliability and durability.

The Model of the Converter

Original Model

Model in Icepro

Model in Icepak

Simplifying the Heat sink In Icepro

Power dissipation, materials, boundary conditions

Mesh

Mesh control Image: Second state
Close Help

Solution - convergence

Typical Simulation Results

Comparison with Experimental Measurements

Parametric trials										
	Functions									
Trial	T1	Т2	Tfh	Tref	Ta	RPM	diode	igbt		
trial001	44.39	44.39	33	38.06	26	3200	17	23		
trial002	71.84	71.82	44.06	56.4	27	3200	40	57.5		
trial003	63.14	63.13	41.06	50.86	27.5	3200	34	43.5		
trial004	62.94	62.94	41.29	50.9	28	3200	35.5	40.5		

Transient Simulation in Icepak

Flow is developed: We need to solve only energy equation.

From Finite Elements to System Simulation

- Electrothermal Simulation with IGBTs:
 - From ANSYS Workbench to System Level

Model Order Reduction

- Relatively new technology
- Solid mathematical background:
 - Approximation of large scale dynamic systems
- Dynamic simulation:
 - Harmonic or transient simulation
- Industry application level:
 - Linear dynamic systems

Model Reduction as Projection

 Projection onto lowdimensional subspace

$$E\dot{\mathbf{x}} + K\mathbf{x} = B\mathbf{u}$$

$$\mathbf{x} = V\mathbf{z} + \boldsymbol{\varepsilon}$$

$$V^T E V \dot{\mathbf{z}} + V^T K V \mathbf{z} = V^T B \mathbf{u}$$

$$E_r$$
 · + K_r · = F_r ·

 Mode superposition is not the best way to do it.

How to find

subspace?

Transferring Model from Icepak to Workbench

ľ	Report s	eport summary data							_×	
	Section	Section Sides Value		Min Max		Mean Stdev T		Total	Area/volume	
	All	All	Heat tr. coeff (W/K-m2)	-3.31558	331.76	22.7281			2.58861 m2	,
	All	All	Heat tr. coeff (W/K-m2)	-3.31559	331.762	22.7275			2.58861 m2	,
	All	All	Heat tr. coeff (W/K-m2)	-3.31559	331.762	22.7285			2.58861 m2	,
	All	All	Heat tr. coeff (W/K-m2)	-3.31558	331.762	22.7295			2.58861 m2	,

 $Q = hA(T - T_{bulk})$

MOR for ANSYS: http://ModelReduction.com

Current version 2.5

Model Reduction: Inputs and Outputs

12 inputs and outputs have been defined

Model reduction

- Dimension of the model in ANSYS is about 900 K DoFs.
- Dimension of the reduced model is 15 DoFs per input = 15*12 = 180.
- The reduced model covers all heat sources and thermal cross talk at once.
- Transient simulation when 1 W has been applied only on device.
 Step response.
- On the next slides there is comparison between the simulation of the full model in ANSYS and the reduced model for T_A1. This curve corresponds to thermal impedance.

Comparison

Red line – ANSYS, green line – reduced model. Difference is close to the line thickness. For such accuracy, one needs 15 DoFs per input.

Comparison

Relative error between results in ANSYS and reduced model.

Comparison with Measurements

- Cooling curves from the stationary state with:
 - 75 W on IGBTs
 - 0 W on diodes
 - T ambient = 28.5
- Using point T2 (P2) and the average on the upper face of IGBT T_B2 for comparison with the measurements

Temperatures on IGBTs

Temperatures under IGBTs

Simulation in Simplorer

Conclusion

- Icepak to quickly simulation IGBT converter
- Compact dynamic thermal model are necessary
- Transfer to ANSYS Workbench with convection boundary conditions
- Compact thermal model are obtained through model reduction

